Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 54 and standard deviation 3 . What is the probability that \( X \) is between 52 and 56 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Kirk French. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 52 and 56 is 0.495.

Solución

Given that \( X \) is normally distributed with a mean (\( \mu \)) of 54 and a standard deviation (\( \sigma \)) of 3, we want to find the probability that \( X \) lies between 52 and 56. To solve this, we'll use the **standard normal distribution** (Z-score): \[ Z = \frac{X - \mu}{\sigma} \] 1. **Calculate the Z-scores for 52 and 56:** - For \( X = 52 \): \[ Z_1 = \frac{52 - 54}{3} = -\frac{2}{3} \approx -0.6667 \] - For \( X = 56 \): \[ Z_2 = \frac{56 - 54}{3} = \frac{2}{3} \approx 0.6667 \] 2. **Find the cumulative probabilities for these Z-scores:** Using standard normal distribution tables or a calculator: - \( \Phi(0.6667) \approx 0.7475 \) - Since the normal distribution is symmetric, \( \Phi(-0.6667) = 1 - \Phi(0.6667) \approx 1 - 0.7475 = 0.2525 \) 3. **Calculate the probability between 52 and 56:** \[ P(52 \leq X \leq 56) = \Phi(0.6667) - \Phi(-0.6667) = 0.7475 - 0.2525 = 0.495 \] **Rounded to the nearest thousandth, the probability is 0.495.** **Answer:** 0.495

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that \( X \) is between 52 and 56, we first convert these values to their corresponding z-scores using the formula \( z = \frac{(X - \mu)}{\sigma} \), where \( \mu \) is the mean and \( \sigma \) is the standard deviation. For \( X = 52 \): \[ z_{52} = \frac{52 - 54}{3} = \frac{-2}{3} \approx -0.667 \] For \( X = 56 \): \[ z_{56} = \frac{56 - 54}{3} = \frac{2}{3} \approx 0.667 \] Next, we can look up these z-scores in the standard normal distribution table or use a calculator to find the probabilities. The probability corresponding to \( z = -0.667 \) is approximately 0.2525, and the probability corresponding to \( z = 0.667 \) is approximately 0.7486. Now, we can find the probability that \( X \) is between 52 and 56: \[ P(52 < X < 56) = P(Z < 0.667) - P(Z < -0.667) \approx 0.7486 - 0.2525 = 0.4961 \] Rounding to the nearest thousandth, the probability that \( X \) is between 52 and 56 is approximately **0.496**.

preguntas relacionadas

Latest Probability Questions

2. A bank has two tellers serving customers from a single queuc. Customers arrive at a rate of 12 per hour ( \( \lambda=12 \) ), and each teller can serve 8 customers per hour \( (\mu=8) \). a) Calculate the system utilization factor ( \( \rho \) ). b) Using queuing tables or approximations, find the average number of customers in the system (L) and the queue (Lq). c) Calculate the average time a customer spends in the system (W) and waiting in the queue (Wq). d) If one teller becomes unavailable, how will this affect the system's utilization and average waiting time? 3. At a bank, customers are prioritized as "VIP" or "Regular." VIP customers are served first, while regular customers wait. The arrival rates are as follows: VIP: 3 customers/hour. Regular: 5 customers/hour. The teller serves all customers at a rate of 12 customers/hour. a) Calculate the overall utilization of the teller. b) Determine the average waiting time for VIP customers and regular customers, assuming separate queues for each group. c) How would the performance change if a second teller is added? 4. In a small rural hospital, a single doctor serves patients in the emergency room. Patients arrive at an average rate of 4 per hour ( \( \lambda=4 \) ), and the doctor can treat 6 patients per hour ( \( \mu=6 \) ). a) Compute the system utilization ( \( \rho \) ). b) Find the average number of patients in the system (L) and in the queue (Lq). c) Determine the average time a patient spends in the queue (Wq) and the system (W). d) If patient arrivals increase to 5 per hour, what happens to the system's performance?
Probability Cameroon Jan 27, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad