Pregunta
upstudy study bank question image url

What is the difference? \( \frac{x}{x^{2}-16}-\frac{3}{x-4} \) \[ \frac{x-3}{(x+5)(x-4)} \]

Ask by Kirk Page. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The difference between the two expressions is \( -\frac{2x+12}{x^{2}-16} - \frac{x-3}{x^{2}+x-20} \).

Solución

Calculate or simplify the expression \( \frac{x}{x^{2}-16}-\frac{3}{x-4} \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{x^{2}-16}-\frac{3}{x-4}\) - step1: Factor the expression: \(\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{3}{x-4}\) - step2: Reduce fractions to a common denominator: \(\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\) - step3: Rewrite the expression: \(\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{3\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\) - step4: Transform the expression: \(\frac{x-3\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\) - step5: Multiply the terms: \(\frac{x-\left(3x+12\right)}{\left(x+4\right)\left(x-4\right)}\) - step6: Subtract the terms: \(\frac{-2x-12}{\left(x+4\right)\left(x-4\right)}\) - step7: Rewrite the fraction: \(-\frac{2x+12}{\left(x+4\right)\left(x-4\right)}\) - step8: Multiply the terms: \(-\frac{2x+12}{x^{2}-16}\) Calculate or simplify the expression \( \frac{x-3}{(x+5)(x-4)} \). Simplify the expression by following steps: - step0: Solution: \(\frac{x-3}{\left(x+5\right)\left(x-4\right)}\) - step1: Multiply the terms: \(\frac{x-3}{x^{2}+x-20}\) The difference between the two expressions is: \[ -\frac{2x+12}{x^{2}-16} - \frac{x-3}{x^{2}+x-20} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle this question, let's first rewrite the expression clearly. The expression is: \[ \frac{x}{x^{2}-16} - \frac{3}{x-4} \] Now, notice that \( x^2 - 16 \) can be factored as \( (x-4)(x+4) \). This means that the first fraction can be rewritten: \[ \frac{x}{(x-4)(x+4)} - \frac{3}{x-4} \] To combine these fractions, we need a common denominator, which would be \( (x-4)(x+4) \). The second fraction becomes: \[ \frac{3}{x-4} \cdot \frac{x+4}{x+4} = \frac{3(x+4)}{(x-4)(x+4)} \] Now we can combine the two fractions: \[ \frac{x - 3(x + 4)}{(x-4)(x+4)} = \frac{x - 3x - 12}{(x-4)(x+4)} = \frac{-2x - 12}{(x-4)(x+4)} \] Finally, we can factor out \(-2\): \[ \frac{-2(x + 6)}{(x-4)(x+4)} \] This gives us the result. Now, just to address the second part, which is the expression: \[ \frac{x-3}{(x+5)(x-4)} \] So, when comparing the two results, you can conclude that \( \frac{-2(x + 6)}{(x-4)(x+4)} \) is not equivalent to \( \frac{x-3}{(x+5)(x-4)} \) as the numerators and denominators do not match up for simplification without specific values of \( x \). In summary, you have a rational expression comparison, yielding two distinct results. Fun tip: When dealing with rational expressions, always keep an eye out for factoring opportunities. It could save you a lot of time and lead you to an easier solution! Trust the factor! 😄

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad