Responder
The inequality has no solution.
Solución
To solve the inequality
\[
1 < \frac{5x - 10}{7x + 14} \cdot \frac{4x + 8}{14x - 28},
\]
we first simplify the expression on the right side.
1. **Factor the expressions:**
- The first fraction:
\[
5x - 10 = 5(x - 2),
\]
\[
7x + 14 = 7(x + 2).
\]
- The second fraction:
\[
4x + 8 = 4(x + 2),
\]
\[
14x - 28 = 14(x - 2).
\]
2. **Substituting the factored forms:**
The inequality becomes:
\[
1 < \frac{5(x - 2)}{7(x + 2)} \cdot \frac{4(x + 2)}{14(x - 2)}.
\]
3. **Cancel common factors:**
The \( (x - 2) \) terms cancel out (assuming \( x \neq 2 \)), and the \( (x + 2) \) terms also cancel out (assuming \( x \neq -2 \)):
\[
1 < \frac{5 \cdot 4}{7 \cdot 14} = \frac{20}{98} = \frac{10}{49}.
\]
4. **Rearranging the inequality:**
We can rewrite the inequality as:
\[
\frac{10}{49} > 1.
\]
This is not true, so we need to analyze the conditions under which the original inequality holds.
5. **Finding critical points:**
The critical points occur when the numerator or denominator is zero:
- \( 5x - 10 = 0 \) gives \( x = 2 \).
- \( 7x + 14 = 0 \) gives \( x = -2 \).
- \( 4x + 8 = 0 \) gives \( x = -2 \) (already found).
- \( 14x - 28 = 0 \) gives \( x = 2 \) (already found).
6. **Testing intervals:**
The critical points divide the number line into intervals: \( (-\infty, -2) \), \( (-2, 2) \), and \( (2, \infty) \).
- **Interval \( (-\infty, -2) \):** Choose \( x = -3 \):
\[
\frac{5(-3) - 10}{7(-3) + 14} \cdot \frac{4(-3) + 8}{14(-3) - 28} = \frac{-15 - 10}{-21 + 14} \cdot \frac{-12 + 8}{-42 - 28} = \frac{-25}{-7} \cdot \frac{-4}{-70} = \frac{25}{7} \cdot \frac{4}{70} = \frac{100}{490} = \frac{10}{49}.
\]
Since \( 1 < \frac{10}{49} \) is false, this interval does not satisfy the inequality.
- **Interval \( (-2, 2) \):** Choose \( x = 0 \):
\[
\frac{5(0) - 10}{7(0) + 14} \cdot \frac{4(0) + 8}{14(0) - 28} = \frac{-10}{14} \cdot \frac{8}{-28} = \frac{-10}{14} \cdot \frac{-8}{28} = \frac{10 \cdot 8}{14 \cdot 28} = \frac{80}{392} = \frac{10}{49}.
\]
Since \( 1 < \frac{10}{49} \) is false, this interval does not satisfy the inequality.
- **Interval \( (2, \infty) \):** Choose \( x = 3 \):
\[
\frac{5(3) - 10}{7(3) + 14} \cdot \frac{4(3) + 8}{14(3) - 28} = \frac{15 - 10}{21 + 14} \cdot \frac{12 + 8}{42 - 28} = \frac{5}{35} \cdot \frac{20}{14} = \frac{1}{7} \cdot \frac{10}{7} = \frac{10}{49}.
\]
Since \( 1 < \frac{10}{49} \) is false, this interval does not satisfy the inequality.
7. **Conclusion:**
The inequality \( 1 < \frac{5x - 10}{7x + 14} \cdot \frac{4x + 8}{14x - 28} \) does not hold for any \( x \) in the real numbers, except at the points where the expression is undefined (i.e., \( x = -2 \) and \( x = 2 \)).
Thus, the solution to the inequality is:
\[
\text{No solution.}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución