Pregunta
upstudy study bank question image url

2. Define (a) Bounded set. (b) Closed set. परिभाषित कीजिए : (क) परिबंध समुच्चय। (ख) संवृत समुच्घय। 3. Prove that \( f(z)=z^{2} \) is uniformly continuous in the domain |z। < 1. सिद्ध कीजिए कि प्रान्त \( |z|<1 \) में \( f(z)=z^{2} \) एकसमान संवत है। 4. Prove that the series \( e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \) is absolutely and uniformly convergent. सिद्ध करो कि श्रेणी \( e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \) निरेक्ष तथा एकसमान अभिसारी है। 5. Define following maps: (a) Translation. (b) Rotation. (c) Magnification.

Ask by Grant Murphy. in India
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Definitions: (a) **Bounded Set**: A set where all points are within a certain distance from each other. (b) **Closed Set**: A set that includes all its limit points. Proof: 3. The function \( f(z) = z^2 \) is uniformly continuous in \( |z| < 1 \) because for any \( \epsilon > 0 \), choosing \( \delta = \frac{\epsilon}{2} \) ensures that if \( |z_1 - z_2| < \delta \), then \( |f(z_1) - f(z_2)| < \epsilon \). 4. The series \( e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \ldots \) is absolutely and uniformly convergent because the Weierstrass M-test applies, showing that the series converges uniformly on compact subsets. Maps: (a) **Translation**: Moves every point by a fixed vector. (b) **Rotation**: Rotates every point around a fixed point by a certain angle. (c) **Magnification**: Scales every point by a fixed factor. These definitions and proofs cover the requested topics.

Solución

Let's address each part of your request step by step. ### 2. Definitions (a) **Bounded Set**: A set \( S \) in a metric space is called bounded if there exists a real number \( M \) such that the distance between any two points in \( S \) is less than \( M \). In other words, there exists a point \( p \) in the space such that the entire set \( S \) lies within a ball of radius \( M \) centered at \( p \). (b) **Closed Set**: A set \( S \) in a metric space is called closed if it contains all its limit points. This means that if a sequence of points in \( S \) converges to a point \( x \), then \( x \) must also be in \( S \). Alternatively, a set is closed if its complement is open. ### 3. Proving Uniform Continuity of \( f(z) = z^2 \) in the Domain \( |z| < 1 \) To prove that \( f(z) = z^2 \) is uniformly continuous in the domain \( |z| < 1 \), we need to show that for every \( \epsilon > 0 \), there exists a \( \delta > 0 \) such that for all \( z_1, z_2 \) in the domain, if \( |z_1 - z_2| < \delta \), then \( |f(z_1) - f(z_2)| < \epsilon \). 1. Start with the expression for the difference: \[ |f(z_1) - f(z_2)| = |z_1^2 - z_2^2| = |(z_1 - z_2)(z_1 + z_2| \] 2. Since \( |z_1| < 1 \) and \( |z_2| < 1 \), we have: \[ |z_1 + z_2| \leq |z_1| + |z_2| < 1 + 1 = 2 \] 3. Therefore, we can bound the difference: \[ |f(z_1) - f(z_2)| \leq 2 |z_1 - z_2| \] 4. To ensure \( |f(z_1) - f(z_2)| < \epsilon \), we can choose \( \delta = \frac{\epsilon}{2} \). Thus, if \( |z_1 - z_2| < \delta \), we have: \[ |f(z_1) - f(z_2)| < 2 \delta = \epsilon \] This shows that \( f(z) = z^2 \) is uniformly continuous in the domain \( |z| < 1 \). ### 4. Proving Absolute and Uniform Convergence of the Series \( e^z \) To prove that the series \( e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \ldots \) is absolutely and uniformly convergent, we can use the Weierstrass M-test. 1. Consider the general term of the series: \[ a_n(z) = \frac{z^n}{n!} \] 2. We need to find a bound \( M_n \) such that \( |a_n(z)| \leq M_n \) for all \( z \) in a compact subset of the complex plane. 3. For \( |z| \leq R \) (where \( R \) is a positive constant), we have: \[ |a_n(z)| = \left| \frac{z^n}{n!} \right| \leq \frac{R^n}{n!} \] 4. The series \( \sum_{n=0}^{\infty} \frac{R^n}{n!} \) converges (it is the Taylor series for \( e^R \)). Therefore, we can choose \( M_n = \frac{R^n}{n!} \). 5. By the Weierstrass M-test, since \( \sum_{n=0}^{\infty} M_n \) converges, the series \( e^z \) converges uniformly on compact subsets of the complex plane. Thus, the series \( e^z \) is absolutely and uniformly convergent. ### 5. Definitions of Maps (a) **Translation**: A translation is a function that shifts every point in a space by a fixed vector. Mathematically, if \( T \) is a translation by a vector \( v \), then for any point \( z \) in the space, the translated point is given by: \[ T(z) = z + v \] (b) **Rotation**: A rotation is a function that rotates every point in a space around a fixed point (the center of rotation) by a certain angle. If \( R \) is a rotation around the origin by an angle \( \theta \), then for any point \( z \), the rotated point is given by: \[ R(z) = z e^{i\theta} \] (c) **Magnification**: A magnification (or dilation) is a function that scales every point in a space by a fixed factor. If \( M \) is a magnification by a factor \( k \), then for any point \( z \), the magnified point is given by: \[ M(z) = k z \] These definitions cover the requested topics comprehensively. If you have any further questions or need additional details, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

परिबंध समुच्चय ऐसा समुच्चय है जिसमें सभी तत्त्व एक निश्चित सीमा के भीतर होते हैं। इसका मतलब है कि अगर कोई तत्व उस समुच्चय में है, तो वह किसी निश्चित संख्या के भीतर पाया जा सकता है, जिससे उसे एक सीमित आकार या मात्रा प्राप्त होती है। एक सरल उदाहरण है \( [a, b] \) जो कि \( a \) और \( b \) के बीच सभी वास्तविक संख्याओं को शामिल करता है। संवृत समुच्घय वह समुच्घय है जिसमें उसके प्रत्येक तत्त्व के आस-पास एक निश्चित मात्रा में “रेडियस” के अन्दर कोई और तत्त्व जुड़ा होता है। मतलब, एक संवृत समुच्घय में, अगर \( x \) तत्व उस समुच्घय का हिस्सा है, तो \( x \) के कुछ निकटस्थ तत्व भी उस समुच्घय का हिस्सा होंगे, जिससे यह “समुच्घय की सीमा” के भीतर आता है।

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad