Pregunta
upstudy study bank question image url

Find

Ask by Norton Rose. in the United Kingdom
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral evaluates to .

Solución

Write the integrand as
Since the numerator is a degree 4 polynomial and the denominator is degree 3, we perform long division. Dividing (the leading term of the numerator) by (the leading term of the denominator ) gives
Multiply the divisor by :
Subtract from the numerator:
Next, divide the new leading term by :
Multiply the divisor by :
Subtract:
The division yields:
Thus, the integral becomes:
Focus on the partial fraction for
Assume
Multiply both sides by :
Expand the right-hand side:
Equate coefficients:
  • Coefficient of : .
  • Coefficient of : .
  • Constant term: .
Thus, we have:
The decomposition is:
The integral now is:
  1. Evaluate :
So,
  1. Evaluate :
  1. Evaluate in two parts:
(a) For :
Let so that . Then
(b) For :
Summing all parts, the integral is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the integral
we can begin by breaking down the fraction into partial fractions. We express the integrand as:
where , , and are constants to be determined. Rewriting the left side, we have:
Simplifying this gives us:
Now, we can match coefficients with the polynomial on the right:
  1. For : There is no term, so its coefficient must be ,
  2. For : The coefficient must be ,
  3. For : The coefficient must be ,
  4. For : The coefficient must be ,
  5. For the constant term: It must be .
From this, we can set up a system of equations:
  • Coefficient of : (no restrictions)
  • Coefficient of : (no restrictions)
  • Coefficient of : ,
  • Coefficient of : ,
  • Constant term: .
From , we substitute into :
Now we have , , and . Thus, we can write the integrand as:
Next, we can integrate term by term:
The first integral is straightforward:
For the second integral, we can break it down further:
The integral of the first part can be solved using substitution , hence :
The second integral is simply:
Putting it all together, we have:
where is the constant of integration.
Thus, the final answer is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad