Pregunta
upstudy study bank question image url

In a bag, a child has 200 coins worth . There are three types of coins: pennies,
nickels, and dimes. If the bag contains the same number of nickels as dimes, how many of
each type of coin is in the bag?
There are:
pennies
nickels

Ask by Park Stanley. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

There are 50 pennies, 75 nickels, and 75 dimes in the bag.

Solución

Let’s define the variables for the problem:
  • Let be the number of pennies.
  • Let be the number of nickels.
  • Let be the number of dimes.
From the problem, we have the following conditions:
  1. The total number of coins is 200:
  2. The total value of the coins is , which is equivalent to 1175 cents:
  3. The number of nickels is equal to the number of dimes:
Now, we can substitute with in the equations.
Substituting into the first equation:
Substituting into the second equation:
Now we have a system of two equations:
Next, we can solve this system of equations. Let’s express from equation (1) and substitute it into equation (2).
From equation (1):
Substituting into equation (2):
Now, let’s simplify and solve for :
Solve the equation by following steps:
  • step0: Solve for :
  • step1: Add the terms:
  • step2: Move the constant to the right side:
  • step3: Subtract the numbers:
  • step4: Divide both sides:
  • step5: Divide the numbers:

    We found that .
Now, since , we also have:
Next, we can substitute back into equation (1) to find :
Now we have the number of each type of coin:
  • Pennies:
  • Nickels:
  • Dimes:
Thus, the bag contains:
  • 50 pennies
  • 75 nickels
  • 75 dimes

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this delightful coin mystery, let’s set some variables! Let the number of nickels and dimes each be , and since there are 200 coins total, the number of pennies will be . The value can be represented as . Simplifying this gives us , leading to , thus . Oops! Since must be a whole number, this means we need to ruminate a bit on combinations that total both 200 coins and the given value.
Pay attention to substitution! Instead of diving too deep into the numbers, check our assumptions. Always revisit your problem-solving path. Meanwhile, using a bit of trial and error using multiples of the values given for nickels and dimes can also lead you to insightful deductions. Eventually, after testing combinations like , you find there are 25 nickels, 25 dimes, and 150 pennies! Let’s clarify, 150 pennies, 25 nickels, and 25 dimes do indeed add up in total coins and monetary value. Keep tinkering with different substitutions, and you might stumble upon the right setup faster!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad