Pregunta
upstudy study bank question image url

(6) The perimeter of a rectangular garden is 114 feet. The width is five leet less than the length, which syxtem of equations could be used to deternine the dimensions of the garden?

Ask by Davey Long. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the garden's dimensions, use the system of equations: \[ \begin{cases} 2L + 2W = 114 \\ W = L - 5 \end{cases} \]

Solución

To determine the dimensions of the rectangular garden, we can set up a system of equations based on the information provided. **Let:** - \( L \) = Length of the garden (in feet) - \( W \) = Width of the garden (in feet) **Given:** 1. **Perimeter of the garden is 114 feet.** The formula for the perimeter (\( P \)) of a rectangle is: \[ P = 2L + 2W \] Substituting the given perimeter: \[ 2L + 2W = 114 \quad \text{(Equation 1)} \] 2. **The width is five feet less than the length.** This relationship can be expressed as: \[ W = L - 5 \quad \text{(Equation 2)} \] **System of Equations:** \[ \begin{cases} 2L + 2W = 114 \\ W = L - 5 \end{cases} \] **Solving the System:** 1. **Substitute Equation 2 into Equation 1:** \[ 2L + 2(L - 5) = 114 \] 2. **Simplify and solve for \( L \):** \[ 2L + 2L - 10 = 114 \\ 4L - 10 = 114 \\ 4L = 124 \\ L = 31 \text{ feet} \] 3. **Find \( W \) using Equation 2:** \[ W = 31 - 5 = 26 \text{ feet} \] **Dimensions of the Garden:** - **Length:** 31 feet - **Width:** 26 feet **Answer:** \[ \begin{cases} 2L + 2W = 114 \\ W = L - 5 \end{cases} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle this problem, let's define the length of the garden as \( L \) and the width as \( W \). According to the problem, we know two things: the perimeter is 114 feet and the width is 5 feet less than the length. This gives us two equations: \( 2L + 2W = 114 \) (perimeter equation) and \( W = L - 5 \) (width equation). You can substitute the second equation into the first, leading to a system of equations that you can solve for \( L \) and \( W \). Now, here’s a tip: always simplify the perimeter equation first before substituting variables. The perimeter can be simplified to \( L + W = 57 \) by dividing everything by 2. This reduces the chance of errors when you start replacing variables, so you can focus on solving linear equations without getting lost in larger calculations. Happy solving!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad