26. \( \frac{\cos ^{2}[(\pi / 2)-x]}{\cos x} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( \frac{\cos ^{2}[(\pi / 2)-x]}{\cos x} \), we can start by using the co-function identity. Based on this identity, we have: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x \] So, we rewrite the expression: \[ \cos^{2}\left(\frac{\pi}{2} - x\right) = \sin^{2}x \] Now, substituting this into our original expression: \[ \frac{\cos^{2}\left(\frac{\pi}{2} - x\right)}{\cos x} = \frac{\sin^{2} x}{\cos x} \] This can be rewritten using the identity for tangent: \[ \frac{\sin^{2} x}{\cos x} = \sin x \cdot \tan x \] Thus, the simplified form of the expression is: \[ \sin x \cdot \tan x \]