3. Defermine the value without using a calculator \( \begin{array}{lll}\text { a) } \frac{+20}{45} & \text { b) } \frac{-16}{+16} & \text { c) } \frac{+12}{-4} \\ \begin{array}{lll}\text { d) }-\frac{1}{2} \times 2 & \text { e) }-6 \times-\frac{1}{3} & \text { f) } \frac{25}{125} \\ \text { g) }(-3)^{2} \times(-2)^{2} & \text { h) }-4 \div\left(\frac{1}{4}-\frac{3}{8}\right) & \text { i) }-\frac{1}{2} \times \frac{1}{3} \times-4 \\ \text { j) } \frac{(-2)^{3}}{(-3)^{2}} & \text { k) } \sqrt{36}-\sqrt{25} & \text { l) }(\sqrt[3]{8})(\sqrt[3]{-27})\end{array}\end{array}> \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
First additional information: Did you know that fractions can often be simplified by finding a common denominator? For example, in part a) \(\frac{20}{45}\), both numbers can be divided by 5 to simplify it to \(\frac{4}{9}\)! This not only makes calculations easier but also helps to understand the relationship between the numbers better. Second additional information: When multiplying or dividing numbers, keep an eye on the signs! For instance, in part e) \(-6 \times -\frac{1}{3}\), multiplying two negative numbers results in a positive. So, don’t get tripped up! It’s like the "double negative" rule in language – two wrongs make a right!