13. Dadas las funciones \( f(x)=\frac{x^{2}+1}{x}, g(x)=\sqrt{x+2}, h(x)=\frac{-1}{x^{2}} \), calcula: \( \begin{array}{ll}\text { a) }(f \circ g)(x) & \text { c) }(g \circ h)(1) \\ \text { b) }(f \circ h \circ g)(x) & \text { d) }(g \circ g)(2)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Para resolver los problemas, vamos a calcular cada una de las funciones compuestas solicitadas. **a) \( (f \circ g)(x) \)** Primero, encontramos \( g(x) \): \[ g(x) = \sqrt{x+2} \] Ahora, aplicamos \( f \) a \( g(x) \): \[ f(g(x)) = f(\sqrt{x+2}) = \frac{(\sqrt{x+2})^2 + 1}{\sqrt{x+2}} = \frac{x+2 + 1}{\sqrt{x+2}} = \frac{x + 3}{\sqrt{x+2}} \] Entonces, \( (f \circ g)(x) = \frac{x + 3}{\sqrt{x + 2}} \). --- **b) \( (f \circ h \circ g)(x) \)** Primero, calculamos \( g(x) \) nuevamente: \[ g(x) = \sqrt{x + 2} \] Ahora, aplicamos \( h \) a \( g(x) \): \[ h(g(x)) = h(\sqrt{x + 2}) = \frac{-1}{(\sqrt{x + 2})^2} = \frac{-1}{x + 2} \] Finalmente, aplicamos \( f \) a \( h(g(x)) \): \[ f(h(g(x))) = f\left(\frac{-1}{x + 2}\right) = \frac{\left(\frac{-1}{x + 2}\right)^2 + 1}{\frac{-1}{x + 2}} = \frac{\frac{1}{(x + 2)^2} + 1}{\frac{-1}{x + 2}} \] Resolviendo, \[ f(h(g(x))) = \frac{\frac{1 + (x + 2)^2}{(x + 2)^2}}{\frac{-1}{x + 2}} = -\frac{1 + (x + 2)^2}{(x + 2)} \] Entonces, \( (f \circ h \circ g)(x) = -\frac{1 + (x + 2)^2}{(x + 2)} \). --- **c) \( (g \circ h)(1) \)** Primero, calculamos \( h(1) \): \[ h(1) = \frac{-1}{1^2} = -1 \] Luego aplicamos \( g \): \[ g(h(1)) = g(-1) = \sqrt{-1 + 2} = \sqrt{1} = 1 \] Entonces, \( (g \circ h)(1) = 1 \). --- **d) \( (g \circ g)(2) \)** Calculamos \( g(2) \): \[ g(2) = \sqrt{2 + 2} = \sqrt{4} = 2 \] Ahora aplicamos \( g \) nuevamente: \[ g(g(2)) = g(2) = 2 \] Entonces, \( (g \circ g)(2) = 2 \). Así que hemos completado los cálculos solicitados.