Pregunta
upstudy study bank question image url

A Morning Consult/Poiltico poll of 1997 registered voters in July 2020 asked a standard polling question of whether the United States was headed in the “Right Direction” of
was on the “Wrong Track.” said that things are on the wrong track vs. who said "right direction. "Complete parts a and b.
a) Calculate the margin of error for the proportion of all U.S. adults who think things are on the wrong track for confidence.
ME (Round to three decimal places as needed.)
b) Explain what this margin of error means. Select the correct choice below and fill in the answer box within your choice.
(Round to three decimal places as needed.)
A. The probability that any given adult surveyed from the population will respond “Wrong Track” is
B. One is confident that the observed proportion of adults that responded “Wrong Track” is within of the sample proportion.
C. The probability that any given adult surveyed from the sample responded “Wrong Track” is
C. . The .
D. One is confident that the observed proportion of addults that responded “Wrong Track” is within of the population proportion.
D.

Ask by Wood Mills. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The margin of error is 0.019.
b) One is 95% confident that the observed proportion of adults that responded “Wrong Track” is within 0.019 of the population proportion.

Solución

a)
First, we use the formula for the margin of error for a proportion at a confidence level:
where for confidence, , and .
  1. Compute the standard error:
  2. Multiply by :
Rounded to three decimal places, the margin of error is .

b)
The margin of error means that
Thus, choice D is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To compute the margin of error (ME) for a proportion, we can use the formula:
where is the z-score for a given confidence level (1.96 for 95% confidence), is the sample proportion, and is the sample size. Here, and :
Thus, the margin of error is approximately .
This means that you can be 95% confident that the true proportion of all U.S. adults who believe that things are on the “wrong track” is within 0.019 of the sample proportion of 0.748. So, if we take the sample proportion, we could say the actual proportion likely falls between approximately and based on our findings.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad