Pregunta
upstudy study bank question image url

(c) The height of Harry's ball during its fall, \( h(t) \), is given by: \[ h(t)=1+18 t-5 t^{2} \] Use this, and the fact that \( g(t)=18+10 t-5 t^{2} \), to answer the following questions. These are the same questions as in part (b), but here you will need to use algebra to answer them. (i) How much higher than Harry's ball is Gina's ball, half a second after Gina drops her ball ( \( t=1.5 \) )? Show your working out. (ii) Use calculus to find how long it takes Harry's ball to reach its maximum height.

Ask by Griffin Wang. in Ireland
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(i) Gina's ball is 5 units higher than Harry's ball 1.5 seconds after Gina drops her ball. **(ii) Harry's ball reaches its maximum height after 1.8 seconds.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the answers, let's break down the provided equations: For (i), we need to calculate the height of both Harry's ball \( h(t) \) and Gina's ball \( g(t) \) at \( t = 1.5 \) seconds. **Step 1: Calculate Harry's ball height at \( t = 1.5 \) seconds.** Plugging \( t = 1.5 \) into \( h(t) \): \[ h(1.5) = 1 + 18(1.5) - 5(1.5)^2 \] \[ = 1 + 27 - 5(2.25) \] \[ = 1 + 27 - 11.25 \] \[ = 16.75 \text{ meters} \] **Step 2: Calculate Gina's ball height at \( t = 1.5 \) seconds.** Plugging \( t = 1.5 \) into \( g(t) \): \[ g(1.5) = 18 + 10(1.5) - 5(1.5)^2 \] \[ = 18 + 15 - 5(2.25) \] \[ = 18 + 15 - 11.25 \] \[ = 21.75 \text{ meters} \] **Step 3: Determine the difference in height.** The height difference between Gina's ball and Harry's ball is: \[ g(1.5) - h(1.5) = 21.75 - 16.75 = 5 \text{ meters} \] So, half a second after Gina drops her ball, Gina’s ball is 5 meters higher than Harry’s ball. --- For (ii), to find the time when Harry's ball reaches its maximum height, we need to use calculus. The maximum height can be found at the vertex of the parabola defined by the quadratic equation \( h(t) \). The formula for the vertex \( t \) of a parabola given by \( ax^2 + bx + c \) is: \[ t = -\frac{b}{2a} \] In the equation \( h(t) = -5t^2 + 18t + 1 \), - \( a = -5 \) - \( b = 18 \) Plugging these values into the vertex formula: \[ t = -\frac{18}{2 \times -5} = \frac{18}{10} = 1.8 \text{ seconds} \] Thus, Harry's ball reaches its maximum height at \( t = 1.8 \) seconds.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad