Pregunta
upstudy study bank question image url

Question 12, 11:3.19 HW score: \( 57.14 \% \), 20 of 35 points Part 1 of 3 Points: 0 of 2 In the weighted voting system below, the weights represent voters A, B, C, and so on, in that order. Find the critical voters in the winning coalitions. \[ [26: 3,5,6,7,10] \] In the winning coalition \( \{A, C, D, E\} \), who are the critical voters? \( C \) and \( E \) All are critical \( A, C \), and \( E \) D and E

Ask by Simpson Love. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All voters in the coalition \( \{A, C, D, E\} \) are critical.

Solución

To determine the critical voters in the winning coalition \( \{A, C, D, E\} \) for the weighted voting system represented by \( [26: 3, 5, 6, 7, 10] \), we need to follow these steps: 1. **Identify the weights of the voters**: - Voter A: 3 - Voter B: 5 - Voter C: 6 - Voter D: 7 - Voter E: 10 2. **Calculate the total weight of the winning coalition**: - The total weight of the coalition \( \{A, C, D, E\} \) is: \[ \text{Total weight} = \text{Weight of A} + \text{Weight of C} + \text{Weight of D} + \text{Weight of E} = 3 + 6 + 7 + 10 = 26 \] 3. **Determine the critical voters**: - A voter is considered critical in a coalition if their removal causes the coalition to lose its winning status (i.e., the total weight drops below the quota of 26). - We will check the impact of removing each voter from the coalition: - **Removing A**: \[ \text{Total weight without A} = 6 + 7 + 10 = 23 \quad (\text{loses winning status}) \] - A is critical. - **Removing C**: \[ \text{Total weight without C} = 3 + 7 + 10 = 20 \quad (\text{loses winning status}) \] - C is critical. - **Removing D**: \[ \text{Total weight without D} = 3 + 6 + 10 = 19 \quad (\text{loses winning status}) \] - D is critical. - **Removing E**: \[ \text{Total weight without E} = 3 + 6 + 7 = 16 \quad (\text{loses winning status}) \] - E is critical. 4. **Conclusion**: - Since removing any of the voters A, C, D, or E causes the coalition to lose its winning status, all voters in the coalition are critical. Thus, the answer is: **All are critical**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In the weighted voting system \( [26: 3, 5, 6, 7, 10] \), a coalition wins if the total weight of its members meets or exceeds the quota, which is 26 in this case. In the coalition \( \{A, C, D, E\} \), we must check the role of each voter. A critical voter is one that, if removed, would cause the coalition to lose. Evaluating the weights: A (3) + C (6) + D (7) + E (10) = 26 (winning). If we remove A (3), the total is 23 (losing). If we remove C (6), the total is 20 (losing). If we remove D (7), the total is 19 (losing). If we remove E (10), the total is 16 (losing). Hence, all voters in the coalition are critical because each one affects the coalition's ability to meet the quota. So the answer is: All are critical.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad