\begin{tabular}{|lc}\hline SOLVING EQUATIONS \\ \hline 1. & Distribute \\ \hline 2. \( \begin{array}{c}\text { Simplify Each Side } \\ \text { by combining like terms }\end{array} \) \\ \hline 3. \( \begin{array}{c}\text { Move Variables } \\ \text { to one side }\end{array} \) \\ \hline 4. \( \begin{array}{c}\text { Solve }\end{array} \) \\ \hline \( \begin{array}{l}\text { Examples inverse operations }\end{array} \) \\ \hline \hline Directions: Solve each equation below. \( \frac{10 x+17-(x-9)}{2}=3 x+1 \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve this equation, let's start by simplifying the left side. Distribute the 10 and then combine like terms. You'll have \( \frac{10x + 17 - x + 9}{2} = 3x + 1 \) which simplifies down to \( \frac{9x + 26}{2} = 3x + 1 \). Next, multiply both sides by 2 to eliminate the fraction: \( 9x + 26 = 6x + 2 \). From here, subtract \( 6x \) from both sides to find \( 3x + 26 = 2 \). Finally, isolate \( x \) by subtracting 26 from both sides, yielding \( 3x = -24 \). Divide by 3 and voilà, you’ve found \( x = -8 \)!