Use synthetic division to find the result when \( x^{4}-x^{3} \pm 4 x^{2}-5 x-3 \) is divided by \( x+1 \). If there is a remainder, express the result in the form \( q(x)+\frac{r(x)}{b(x)} \). Answer Attempt 1 out of 2 Submit Answer
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To perform synthetic division of the polynomial \( x^{4}-x^{3} + 4x^{2}-5x-3 \) by \( x+1 \), we will evaluate it at \( x = -1 \). This means we will set up our synthetic division using the coefficients: \( 1, -1, 4, -5, -3 \). 1. Write down the coefficients: - \( 1, -1, 4, -5, -3 \) 2. Perform synthetic division by -1: - Bring down the 1. - Multiply -1 by 1 and add to -1 → \( -1 + (-1) = -2 \) - Multiply -1 by -2 and add to 4 → \( 4 + 2 = 6 \) - Multiply -1 by 6 and add to -5 → \( -5 - 6 = -11 \) - Multiply -1 by -11 and add to -3 → \( -3 + 11 = 8 \) The result gives us coefficients for the quotient polynomial: \( 1x^{3} - 2x^{2} + 6x - 11 \), with a remainder of \( 8 \). Thus, the result in the required form is: \[ q(x) + \frac{r(x)}{b(x)} = x^3 - 2x^2 + 6x - 11 + \frac{8}{x+1} \]