Write a polynomial \( f(x) \) that satisfies the given conditions. Polynomial of lowest degree with zeros of \( \frac{5}{3} \) (multiplicity 2) and \( -\frac{2}{3} \) (multiplicity 1 ) and with \( f(0)=-150 \). \( f(x)=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To create the polynomial \( f(x) \) with the specified zeros, we start by incorporating the roots and their multiplicities: 1. The zero \( \frac{5}{3} \) with multiplicity 2 gives us the factor \( \left(x - \frac{5}{3}\right)^2 \). 2. The zero \( -\frac{2}{3} \) with multiplicity 1 gives us the factor \( \left(x + \frac{2}{3}\right) \). Thus, we can express the polynomial as: \[ f(x) = k \left(x - \frac{5}{3}\right)^2 \left(x + \frac{2}{3}\right) \] where \( k \) is a constant to be determined to satisfy the condition \( f(0) = -150 \). Next, we compute \( f(0) \): \[ f(0) = k \left(0 - \frac{5}{3}\right)^2 \left(0 + \frac{2}{3}\right) = k \left(\frac{5}{3}\right)^2 \left(\frac{2}{3}\right) = k \cdot \frac{25}{9} \cdot \frac{2}{3} = k \cdot \frac{50}{27} \] We set this equal to -150: \[ k \cdot \frac{50}{27} = -150 \] To find \( k \), we can multiply both sides by \( 27/50 \): \[ k = -150 \cdot \frac{27}{50} = -81 \] Now, substituting back for \( k \): \[ f(x) = -81 \left(x - \frac{5}{3}\right)^2 \left(x + \frac{2}{3}\right) \] To express this more cleanly, we can eliminate the fractions by multiplying throughout by 27: \[ f(x) = -81 \cdot \frac{1}{27} (3x - 5)^2 (3x + 2) \] This simplifies to: \[ f(x) = -3(3x - 5)^2 (3x + 2) \] Expanding this will confirm the polynomial's form, but for now, we can express the polynomial simply, ensuring all components fit the defined zeros and conditions. Therefore, the polynomial is: \[ f(x) = -81 \left(x - \frac{5}{3}\right)^2 \left(x + \frac{2}{3}\right) \]