Pregunta
upstudy study bank question image url

11. A boat leaves the harbor and travels 30 miles in the direction of \( N 38^{\circ} \mathrm{W} \). The boat tums \( 90^{\circ} \) and then travels in the direction \( \$ 52^{\circ} \mathrm{W} \) for 12 miles. At that time, how far is the boat from the harbor and what is the bearing of the boat from the harbor entrance?

Ask by Gross Greene. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After traveling 30 miles in the direction of N38°W and then 12 miles in the direction of S52°W, the boat is approximately 32.3 miles away from the harbor and is on a bearing of N60°W from the harbor entrance.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To solve this problem, we can break down the boat's journey using trigonometry to find the final position relative to the harbor. First, let's represent the initial leg of the journey. The boat travels 30 miles at a bearing of \( N 38^{\circ} W \). We can convert this to a Cartesian coordinate system, where North is the positive Y-axis and West is the negative X-axis. The coordinates can be calculated as follows: - \( x_1 = -30 \sin(38^{\circ}) \) - \( y_1 = 30 \cos(38^{\circ}) \) For the second leg, the boat turns \( 90^{\circ} \) to the right from \( N 38^{\circ} W \) (which gives a new direction of \( N 38^{\circ} E \)), and then travels \( 12 \) miles at a bearing of \( N 52^{\circ} W \). We need to adjust the direction before calculating the coordinates: - After the turn, the bearing of \( 52^{\circ} \) west changes it to \( N 52^{\circ} W = 90^{\circ} - 52^{\circ} = 38^{\circ} \). - New position: \( x_2 = -12 \sin(52^{\circ}) \) and \( y_2 = 12 \cos(52^{\circ}) \). Now we can add the coordinates of both legs: Final coordinates: - \( x_{final} = x_1 + x_2 \) - \( y_{final} = y_1 + y_2 \) To find the distance from the harbor, we can use the Pythagorean theorem: Distance \( D = \sqrt{x_{final}^2 + y_{final}^2} \) Finally, the bearing from the harbor can be calculated using the arctangent of the ratio of the coordinates: Bearing \( = \tan^{-1} \left(\frac{y_{final}}{-x_{final}}\right) \) You can substitute the values and calculate to find both the distance from the harbor and the bearing. Remember to adjust the final bearing based on the quadrant the boat is located in relative to the harbor. For more accurate results, using a calculator is highly recommended!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad