A bag of candy has 5 red candies, 3 blue candies, and 6 green candies. Let \( X \) be the event of randomly choosing a blue candy. (a) Find \( P(X) \). \( P(X)= \) Enter your answer (b) Find \( P\left(X^{\prime}\right) \). \( P\left(X^{\prime}\right)= \) Enter your answer
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( P(X) \), we first need to determine the total number of candies in the bag. We have 5 red, 3 blue, and 6 green candies, which adds up to: \[ 5 + 3 + 6 = 14 \text{ candies} \] Now, the probability of choosing a blue candy, \( P(X) \), is given by the ratio of the number of blue candies to the total number of candies: \[ P(X) = \frac{\text{Number of blue candies}}{\text{Total number of candies}} = \frac{3}{14} \] So, \( P(X) = \frac{3}{14} \). Next, to find \( P(X^{\prime}) \), we need to calculate the probability of not choosing a blue candy. This is represented as \( P(X^{\prime}) \): \[ P(X^{\prime}) = 1 - P(X) = 1 - \frac{3}{14} = \frac{14}{14} - \frac{3}{14} = \frac{11}{14} \] Therefore, \( P(X^{\prime}) = \frac{11}{14} \).