Pregunta

7 The sum to terms of a geometric series is 728 . If the first term is 2 and the last term is 486 , find the common ratio and the number of terms.

Ask by Elliott Ramirez. in South Africa
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The common ratio is 3 and there are 6 terms in the series.

Solución

To solve for the common ratio and the number of terms in the geometric series, we’ll use the given information:
  1. First term ( ): 2
  2. Last term ( ): 486
  3. Sum to terms ( ): 728

Step 1: Relate the Last Term to the Common Ratio and Number of Terms

The formula for the -th term ( ) of a geometric series is:
Substituting the known values:
Notice that , which suggests and , so .

Step 2: Verify with the Sum Formula

The sum of the first terms of a geometric series is given by:
Plugging in , , and :
This confirms that our values satisfy the given sum.

Conclusion

  • Common Ratio ( ): 3
  • Number of Terms ( ): 6
Answer:
The common ratio is 3 and the series contains 6 terms.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we start with the known formulas for a geometric series. The sum of the first terms of a geometric series can be represented as:
where is the first term, is the common ratio, and is the number of terms. In this case, we have and .
We also know the last term ( ) of the geometric series can be expressed as:
Given that , we can substitute the known values:
From this, we can solve for :
Now we have two equations to work with:
We’ll start by calculating from the second equation. Since , we can express as:
Let’s assume , then:
Now, substituting and into the first equation to check if both relationships hold:
Both conditions are satisfied, confirming that and .
Thus, the common ratio is and the number of terms is .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad