Pregunta
upstudy study bank question image url

Angela deposits \( \$ 3500 \) into an account with an APR of \( 2.5 \% \) for 11 years. Find the future value of the account if interest is compounded monthly. Round your answer to the nearest hundredth, if necessary.

Ask by Santiago Todd. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The future value of Angela's account after 11 years is approximately \$4,606.54.

Solución

To find the future value of an account with compound interest, we can use the formula: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( FV \) is the future value of the investment/loan, including interest, - \( P \) is the principal investment amount (the initial deposit or loan amount), - \( r \) is the annual interest rate (decimal), - \( n \) is the number of times that interest is compounded per unit \( t \), - \( t \) is the time the money is invested or borrowed for, in years. Given: - \( P = 3500 \) - \( r = 2.5\% = 0.025 \) - \( n = 12 \) (since the interest is compounded monthly) - \( t = 11 \) Now, we can substitute these values into the formula: \[ FV = 3500 \left(1 + \frac{0.025}{12}\right)^{12 \times 11} \] Let's calculate this step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.025}{12} \] 2. Calculate \( nt \): \[ 12 \times 11 \] 3. Substitute these values into the formula and calculate \( FV \). Now, I will perform these calculations. Calculate the value by following steps: - step0: Calculate: \(12\times 11\) - step1: Multiply the numbers: \(132\) Calculate or simplify the expression \( 0.025/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.025}{12}\) - step1: Convert the expressions: \(\frac{\frac{1}{40}}{12}\) - step2: Multiply by the reciprocal: \(\frac{1}{40}\times \frac{1}{12}\) - step3: Multiply the fractions: \(\frac{1}{40\times 12}\) - step4: Multiply: \(\frac{1}{480}\) Calculate or simplify the expression \( 3500*(1+0.00208333)^(132) \). Calculate the value by following steps: - step0: Calculate: \(3500\left(1+0.00208333\right)^{132}\) - step1: Add the numbers: \(3500\times 1.00208333^{132}\) - step2: Convert the expressions: \(3500\left(\frac{100208333}{100000000}\right)^{132}\) - step3: Simplify: \(3500\times \frac{100208333^{132}}{100000000^{132}}\) - step4: Rewrite the expression: \(500\times 7\times \frac{100208333^{132}}{100000000^{132}}\) - step5: Rewrite the expression: \(500\times 7\times \frac{100208333^{132}}{250000^{132}\times 400^{132}}\) - step6: Rewrite the expression: \(500\times 7\times \frac{100208333^{132}}{500^{264}\times 400^{132}}\) - step7: Reduce the numbers: \(7\times \frac{100208333^{132}}{500^{263}\times 400^{132}}\) - step8: Multiply the fractions: \(\frac{7\times 100208333^{132}}{500^{263}\times 400^{132}}\) Now that we have the necessary calculations: 1. The monthly interest rate \( \frac{r}{n} \) is approximately \( 0.00208333 \). 2. The total number of compounding periods \( nt \) is \( 132 \). Now we can substitute these values into the future value formula: \[ FV = 3500 \left(1 + 0.00208333\right)^{132} \] Calculating this gives us: \[ FV \approx 3500 \times (1.00208333)^{132} \approx 4606.54 \] Thus, the future value of the account after 11 years, rounded to the nearest hundredth, is approximately: \[ \boxed{4606.54} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the future value of the account with compound interest, you can use the formula: \[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( P \) is the principal amount (initial deposit), - \( r \) is the annual interest rate (decimal), - \( n \) is the number of times interest is compounded per year, - \( t \) is the number of years the money is invested or borrowed. For this problem: - \( P = 3500 \) - \( r = 0.025 \) (which is \( 2.5\% \)) - \( n = 12 \) (monthly compounding) - \( t = 11 \) Now, plug these values into the formula: \[ FV = 3500 \left(1 + \frac{0.025}{12}\right)^{12 \times 11} \] First, calculate the monthly interest rate: \[ \frac{0.025}{12} = 0.00208333 \] Now, compute: \[ FV = 3500 \left(1 + 0.00208333\right)^{132} \] Calculate \( (1 + 0.00208333)^{132} \): \[ (1.00208333)^{132} \approx 1.30477 \] Finally, multiply by the principal: \[ FV \approx 3500 \times 1.30477 \approx 4566.70 \] Thus, the future value of the account is approximately \( \boxed{4566.70} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad