Responder
The future value of Angela's account after 11 years is approximately \$4,606.54.
Solución
To find the future value of an account with compound interest, we can use the formula:
\[
FV = P \left(1 + \frac{r}{n}\right)^{nt}
\]
where:
- \( FV \) is the future value of the investment/loan, including interest,
- \( P \) is the principal investment amount (the initial deposit or loan amount),
- \( r \) is the annual interest rate (decimal),
- \( n \) is the number of times that interest is compounded per unit \( t \),
- \( t \) is the time the money is invested or borrowed for, in years.
Given:
- \( P = 3500 \)
- \( r = 2.5\% = 0.025 \)
- \( n = 12 \) (since the interest is compounded monthly)
- \( t = 11 \)
Now, we can substitute these values into the formula:
\[
FV = 3500 \left(1 + \frac{0.025}{12}\right)^{12 \times 11}
\]
Let's calculate this step by step.
1. Calculate \( \frac{r}{n} \):
\[
\frac{0.025}{12}
\]
2. Calculate \( nt \):
\[
12 \times 11
\]
3. Substitute these values into the formula and calculate \( FV \).
Now, I will perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(12\times 11\)
- step1: Multiply the numbers:
\(132\)
Calculate or simplify the expression \( 0.025/12 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.025}{12}\)
- step1: Convert the expressions:
\(\frac{\frac{1}{40}}{12}\)
- step2: Multiply by the reciprocal:
\(\frac{1}{40}\times \frac{1}{12}\)
- step3: Multiply the fractions:
\(\frac{1}{40\times 12}\)
- step4: Multiply:
\(\frac{1}{480}\)
Calculate or simplify the expression \( 3500*(1+0.00208333)^(132) \).
Calculate the value by following steps:
- step0: Calculate:
\(3500\left(1+0.00208333\right)^{132}\)
- step1: Add the numbers:
\(3500\times 1.00208333^{132}\)
- step2: Convert the expressions:
\(3500\left(\frac{100208333}{100000000}\right)^{132}\)
- step3: Simplify:
\(3500\times \frac{100208333^{132}}{100000000^{132}}\)
- step4: Rewrite the expression:
\(500\times 7\times \frac{100208333^{132}}{100000000^{132}}\)
- step5: Rewrite the expression:
\(500\times 7\times \frac{100208333^{132}}{250000^{132}\times 400^{132}}\)
- step6: Rewrite the expression:
\(500\times 7\times \frac{100208333^{132}}{500^{264}\times 400^{132}}\)
- step7: Reduce the numbers:
\(7\times \frac{100208333^{132}}{500^{263}\times 400^{132}}\)
- step8: Multiply the fractions:
\(\frac{7\times 100208333^{132}}{500^{263}\times 400^{132}}\)
Now that we have the necessary calculations:
1. The monthly interest rate \( \frac{r}{n} \) is approximately \( 0.00208333 \).
2. The total number of compounding periods \( nt \) is \( 132 \).
Now we can substitute these values into the future value formula:
\[
FV = 3500 \left(1 + 0.00208333\right)^{132}
\]
Calculating this gives us:
\[
FV \approx 3500 \times (1.00208333)^{132} \approx 4606.54
\]
Thus, the future value of the account after 11 years, rounded to the nearest hundredth, is approximately:
\[
\boxed{4606.54}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución