Pregunta
upstudy study bank question image url

\( 6 x ^ { 2 } + 5 x y - 15 y ^ { 2 } \)

Ask by Pritchard Luna. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \(6x^2 + 5xy - 15y^2\) cannot be factored into binomials with rational coefficients.

Solución

The expression you've provided is a quadratic in two variables: \[ 6x^2 + 5xy - 15y^2 \] ### **Attempting to Factor the Expression** To factor a quadratic trinomial of the form \( ax^2 + bxy + cy^2 \), we look for two binomials: \[ (ax + by)(cx + dy) \] Expanding these binomials gives: \[ acx^2 + (ad + bc)xy + bdy^2 \] For your expression: - \( ac = 6 \) - \( bd = -15 \) - \( ad + bc = 5 \) **Possible Factor Pairs:** 1. **For \( ac = 6 \):** - (2, 3) - (3, 2) - (6, 1) - (1, 6) 2. **For \( bd = -15 \):** - (1, -15) - (-1, 15) - (3, -5) - (-3, 5) - (5, -3) - (-5, 3) **Testing Factor Combinations:** After systematically testing all possible combinations of these factors, none satisfy the condition \( ad + bc = 5 \). For example: - **Using \( a = 2 \) and \( c = 3 \):** - If \( b = 5 \) and \( d = -3 \): \[ ad + bc = 2(-3) + 3(5) = -6 + 15 = 9 \neq 5 \] - Similarly, other combinations do not yield \( ad + bc = 5 \). **Conclusion:** Since none of the integer or simple fractional combinations satisfy all the necessary conditions for factoring, the quadratic expression: \[ 6x^2 + 5xy - 15y^2 \] **cannot be factored into binomials with rational coefficients**. ### **Alternative Approach: Completing the Square** If you're interested in other forms, such as completing the square or analyzing the expression further, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that polynomials like \( 6x^2 + 5xy - 15y^2 \) are not just abstract concepts? They actually represent real-world scenarios, such as calculating areas, predicting profits, or modeling physical phenomena. Each term can correspond to different aspects of a problem, making them super versatile tools in mathematics! When factoring a polynomial like this, a common mistake is to overlook the possibility of grouping terms effectively. It’s essential to look for a common factor across the entire expression or specific groupings. In this case, you can factor by grouping or using the quadratic formula to simplify your work. Just remember, double-check that you’ve accounted for all terms!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad