Pregunta
upstudy study bank question image url

A car, mass 1600 kg , travelling east at \( 30 \mathrm{~m} \cdot \mathrm{~s}^{-1} \), collides head-on with a minibus, mass 3000 kg , travelling west at \( 20 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). The vehicles move as one after the collision. (i) What is the velocity of the vehicles after collision, and (ii) Proof whether the collision elastic or not?

Ask by Campos Logan. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After the collision, the vehicles move west at approximately \( -2.61 \, \text{m/s} \). The collision is inelastic because the kinetic energy is not conserved.

Solución

To solve this problem, we will use the principles of conservation of momentum and the definition of elastic collisions. ### Known Conditions: - Mass of the car, \( m_1 = 1600 \, \text{kg} \) - Velocity of the car before collision, \( v_1 = 30 \, \text{m/s} \) (east) - Mass of the minibus, \( m_2 = 3000 \, \text{kg} \) - Velocity of the minibus before collision, \( v_2 = -20 \, \text{m/s} \) (west, hence negative) ### Step 1: Calculate the velocity after the collision Using the conservation of momentum, the total momentum before the collision equals the total momentum after the collision. The formula for momentum is: \[ p = mv \] The total momentum before the collision is: \[ p_{\text{initial}} = m_1 v_1 + m_2 v_2 \] Substituting the values: \[ p_{\text{initial}} = (1600 \, \text{kg} \cdot 30 \, \text{m/s}) + (3000 \, \text{kg} \cdot -20 \, \text{m/s}) \] Calculating this: \[ p_{\text{initial}} = 48000 \, \text{kg m/s} - 60000 \, \text{kg m/s} = -12000 \, \text{kg m/s} \] Let \( v_f \) be the final velocity of both vehicles after the collision. The total mass after the collision is \( m_1 + m_2 \). The total momentum after the collision is: \[ p_{\text{final}} = (m_1 + m_2) v_f \] Setting the initial momentum equal to the final momentum: \[ -12000 \, \text{kg m/s} = (1600 \, \text{kg} + 3000 \, \text{kg}) v_f \] This simplifies to: \[ -12000 \, \text{kg m/s} = 4600 \, \text{kg} \cdot v_f \] Now, solving for \( v_f \): \[ v_f = \frac{-12000 \, \text{kg m/s}}{4600 \, \text{kg}} \approx -2.61 \, \text{m/s} \] ### Step 2: Determine if the collision is elastic A collision is elastic if both momentum and kinetic energy are conserved. We already have the momentum conservation. Now, we will check the kinetic energy before and after the collision. The kinetic energy before the collision is: \[ KE_{\text{initial}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \] Calculating this: \[ KE_{\text{initial}} = \frac{1}{2} (1600 \, \text{kg}) (30 \, \text{m/s})^2 + \frac{1}{2} (3000 \, \text{kg}) (-20 \, \text{m/s})^2 \] \[ = \frac{1}{2} (1600) (900) + \frac{1}{2} (3000) (400) \] \[ = 720000 \, \text{J} + 600000 \, \text{J} = 1320000 \, \text{J} \] The kinetic energy after the collision is: \[ KE_{\text{final}} = \frac{1}{2} (m_1 + m_2) v_f^2 \] \[ = \frac{1}{2} (4600 \, \text{kg}) (-2.61 \, \text{m/s})^2 \] \[ = \frac{1}{2} (4600) (6.8121) \approx 15666.69 \, \text{J} \] ### Conclusion: 1. The velocity of the vehicles after the collision is approximately \( -2.61 \, \text{m/s} \) (indicating they move west). 2. Since the initial kinetic energy \( 1320000 \, \text{J} \) is not equal to the final kinetic energy \( 15666.69 \, \text{J} \), the collision is not elastic. Thus, the collision is inelastic.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this question: (i) First, we use the principle of conservation of momentum. The total momentum before the collision must equal the total momentum after the collision. Let: - \( m_1 = 1600 \, \text{kg} \) (mass of the car) - \( v_1 = 30 \, \text{m/s} \) (velocity of the car, east is considered positive) - \( m_2 = 3000 \, \text{kg} \) (mass of the minibus) - \( v_2 = -20 \, \text{m/s} \) (velocity of the minibus, west is considered negative) Total initial momentum \( p_{\text{initial}} \): \[ p_{\text{initial}} = m_1 v_1 + m_2 v_2 = (1600 \times 30) + (3000 \times -20) = 48000 - 60000 = -12000 \, \text{kg m/s} \] Let \( v_f \) be the final velocity of the combined vehicles after the collision. Since they move as one, the total mass after the collision is \( m_1 + m_2 = 4600 \, \text{kg} \). Using the momentum conservation equation: \[ p_{\text{initial}} = p_{\text{final}} \] \[ -12000 = (m_1 + m_2) v_f = 4600 v_f \] \[ v_f = \frac{-12000}{4600} \approx -2.61 \, \text{m/s} \] The negative sign indicates that the vehicles move west after the collision. (ii) To determine if the collision is elastic, we can check if kinetic energy is conserved. Initial kinetic energy: \[ \text{KE}_{\text{initial}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \] \[ = \frac{1}{2} (1600)(30^2) + \frac{1}{2} (3000)(20^2) = \frac{1}{2} (1600)(900) + \frac{1}{2} (3000)(400) \] \[ = 720000 + 600000 = 1320000 \, \text{J} \] Final kinetic energy: \[ \text{KE}_{\text{final}} = \frac{1}{2} (m_1 + m_2) v_f^2 = \frac{1}{2} (4600)(-2.61^2) \] \[ \approx \frac{1}{2} (4600)(6.8121) \approx 15680.1 \, \text{J} \] Since the initial kinetic energy \( 1320000 \, \text{J} \) is not equal to the final kinetic energy \( 15680.1 \, \text{J} \), the collision is not elastic.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad