Pregunta
upstudy study bank question image url

EXPLORE & REASON
A. Solve . Use at least two different methods.
Solving Radical
Equations
(T) SavvasRealize.com
B. Try each of the methods you used in part (a) to solve .
C. Generalize Which of the methods is better suited for solving an equation with a radical? What problems arise when using the other method?
HABITS OF MIND
Construct Arguments The squares of two numbers are equal. Does that mean that the two numbers themselves must also be equal? Explain.
LESSON 5-4 Solving Radical Equations
123

Ask by French Vaughan. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A. Solve using two methods
Method 1:
  1. Subtract 2 from both sides: .
  2. Divide by 3: .
  3. Take square root: or .
  4. Solve for : or .
Method 2:
  1. Let .
  2. Equation becomes .
  3. Subtract 2: .
  4. Divide by 3: .
  5. Take square root: or .
  6. Solve for : or .

B. Solve using both methods
Method 1:
  1. Subtract 2: .
  2. Cube both sides: .
  3. Solve for : .
Method 2:
  1. Let .
  2. Equation becomes .
  3. Solve for : .
  4. Cube both sides: .
  5. Solve for : .

C. Generalization:
For equations with even-index radicals (like square roots), isolating the radical and squaring both sides is effective but requires checking for extraneous solutions. For odd-index radicals (like cube roots), isolating and cubing is straightforward and less error-prone.
Constructing Arguments:
If , then or . For example, and , but .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To tackle , you might start by isolating the square term. Subtract 2 from both sides to get , then divide by 3, leading to . Taking the square root yields two possible solutions: or , giving us and . Alternatively, graphing the function and the line can visually indicate where they intersect.
For the equation , start by isolating the cube root: . Cubing both sides gives , thus . Alternatively, you might rewrite this as , which emphasizes the same cube root manipulation. Each method leads you to the same solution, showcasing the clear advantage of isolating variables in radical equations!
Using isolation tends to shine in radical equations because it allows you to eliminate the radical effectively, leading to straightforward solutions. With the other method, there’s a risk of introducing extraneous solutions, especially with square roots where both positive and negative roots exist. That can cause confusion, so be careful not to lose track of which solutions are valid!
While squares of two numbers can be equal, the numbers themselves do not have to be identical. Consider and ; both yield (as and ). Hence, equal squares imply that the numbers are either equal or opposites, leading to crucial distinctions in problem-solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad