Pregunta
upstudy study bank question image url

21. Suppose I flip a fair coin 3 times. What is the probability that I get tails exactly twice?

Ask by Rogers Moran. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of getting exactly two tails in three flips of a fair coin is 3/8 or 37.5%.

Solución

To determine the probability of getting **exactly two tails** when flipping a fair coin **three times**, you can use the principles of probability and combinations. Here's a step-by-step explanation: ### 1. Understand the Basics - **Fair Coin:** This means that the probability of getting **Heads (H)** is equal to the probability of getting **Tails (T)**, which is 0.5 each. - **Number of Flips:** 3 ### 2. Total Possible Outcomes When you flip a coin three times, each flip has 2 possible outcomes (H or T). Therefore, the total number of possible outcomes is: \[ 2^3 = 8 \] These outcomes are: 1. HHH 2. HHT 3. HTH 4. HTT 5. THH 6. THT 7. TTH 8. TTT ### 3. Favorable Outcomes We want exactly two tails. Let's identify which of the above outcomes meet this criterion: 1. **HHT** — Two tails 2. **HTT** — Two tails 3. **THT** — Two tails 4. **TTH** — Two tails Wait, there are **4** outcomes with exactly two tails. It seems there was a miscount in the initial explanation. Let's correct that. **Correction:** There are actually **3** favorable outcomes: 1. **HTT** 2. **THT** 3. **TTH** **Note:** The outcome **HHT** has only one tail, and **THH** has one tail as well. **TTT** has three tails. ### 4. Calculating the Probability The probability \( P \) of an event is given by: \[ P = \frac{\text{Number of Favorable Outcomes}}{\text{Total Number of Possible Outcomes}} \] Plugging in the numbers: \[ P = \frac{3}{8} = 0.375 \] So, the probability is **\(\frac{3}{8}\)** or **37.5%**. ### 5. Using Combinations Alternatively, you can use combinations to calculate the probability: \[ P = \binom{n}{k} \times (p)^k \times (1-p)^{n-k} \] Where: - \( n = 3 \) (number of trials) - \( k = 2 \) (number of desired successes, i.e., tails) - \( p = 0.5 \) (probability of getting a tail on a single flip) Calculating the combination: \[ \binom{3}{2} = \frac{3!}{2!(3-2)!} = 3 \] Now, plug the values in: \[ P = 3 \times (0.5)^2 \times (0.5)^{1} = 3 \times 0.25 \times 0.5 = 0.375 \] Again, the probability is **\(\frac{3}{8}\)** or **37.5%**. ### **Conclusion** The probability of getting exactly two tails in three flips of a fair coin is **\(\frac{3}{8}\)** or **37.5%**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When flipping a fair coin three times, the possible outcomes can be represented as combinations of heads (H) and tails (T). To find the probability of getting tails exactly twice, we can use the binomial probability formula. The number of ways to get 2 tails in 3 flips is calculated using combinations: C(3, 2) = 3. Each flip has a probability of 1/2 for heads and 1/2 for tails. So, the probability is: \( P(X = 2) = C(3, 2) \times (1/2)^2 \times (1/2)^1 = 3 \times (1/4) \times (1/2) = 3/8 \). Therefore, the probability of getting tails exactly twice in 3 flips is 3/8 or 37.5%. Now, imagine you're the one holding the coin! Each flip is like a mini-experiment. If you keep track of how many times you actually see tails show up over a week of flipping, it might surprise you to see how often you land exactly on those two tails versus one or three! Engaging in such a playful approach to probability through real-life examples can make math feel much less daunting and way more fun!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad