1.2 Sets of Real Numbers Write all names that apply to each number. 8. \( \frac{121}{\sqrt{121}} \) 9. \( \frac{\pi}{2} \) 10. Tell whether the statement "All integers are rational numbers" is true or false. Explain your choice.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
For the first expression, \( \frac{121}{\sqrt{121}} \), it simplifies to \( \frac{121}{11} = 11 \). Therefore, the names that apply to this number include: natural number, whole number, integer, rational number, and real number. For the second expression, \( \frac{\pi}{2} \), this number is approximately 1.57 and represents a value between two integers. It can be categorized as irrational, real, and can sometimes be seen in contexts involving transcendental numbers since \(\pi\) itself is a transcendental, irrational number. Regarding the statement "All integers are rational numbers," it is true! This is because rational numbers are defined as numbers that can be expressed as a fraction \( \frac{a}{b} \), where \( a \) and \( b \) are integers and \( b \neq 0 \). Since every integer can be expressed in the form \( \frac{n}{1} \), where \( n \) is any integer, all integers are indeed rational.