Pregunta
upstudy study bank question image url

  1. Find the Cartesian equation of the line that passes through the points and .
    a)
    b)
    c)
  2. Write the Cartesian equation of the line through the points
    a) and
    b) and

Ask by Lowe Nguyen. in Mongolia
Mar 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

3. Cartesian Equation of a Line in 3D
a) For and :
b) For and :
c) For and :

4. Cartesian Equation of a Line in 2D
a) For points and :
b) For points and :

Solución

3. Cartesian Equation of a Line in 3D
a) For and :
  1. Compute the direction vector:
  2. Write the symmetric equations of the line: which simplifies to:

b) For and :
  1. Compute the direction vector:
  2. Simplify the direction vector by dividing by : (Alternatively, you can use ; the line remains the same.)
  3. Write the symmetric equations using the original (or simplified) direction vector. Using the original form: Or, using the simplified vector with :

c) For and :
  1. Compute the direction vector:
  2. Write the symmetric equations of the line:

4. Cartesian Equation of a Line in 2D
a) For points and :
  1. Compute the slope:
  2. Use the point-slope form with point :
  3. To write in standard form, multiply both sides by 2:
  4. Rearranging:

b) For points and :
  1. Compute the slope:
  2. Use the point-slope form with point :
  3. Multiply both sides by 5:
  4. Expand and simplify:
  5. Rearranging:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the Cartesian equation of the line passing through points A and B in three-dimensional space, you can use the vector form of the line. For part (a), first, calculate the direction vector . The parametric equations are , , . Eliminating the parameter gives the Cartesian equation. Repeat similarly for other parts.
For the two-dimensional lines, you can use the slope-intercept form. For part (a), the slope and the equation can be defined as . For part (b), the slope is , leading to the line equation .

The concept of lines in three-dimensional space dates back to the early developments of geometry. Mathematicians like Euclid laid the groundwork for understanding the relationship between points and lines, which expanded with the advent of analytic geometry developed by Descartes and Fermat in the 17th century. Understanding these concepts allows for the exploration of dimensions beyond our usual perception.
In solving problems like these, a common mistake is forgetting to keep track of direction vectors or mistaking the equation forms, particularly switching between parametric and Cartesian equations. Make sure to double-check your slope calculations and remember: an accurate drawing can make a world of difference in visualizing these relationships!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad