Use the inequality to answer Parts 1-3. \( -3(x-2) \leq \frac{1}{3} \) Part i: Solve the inequality. Leave answer In terms of a whole number or reduced improper fraction. Part 2: Write a verbal statement describing the solution to the inequality. Part 3: Verify your solution to the inequality using two elements of the solution set.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the inequality \( -3(x-2) \leq \frac{1}{3} \), first distribute the -3: \[ -3x + 6 \leq \frac{1}{3} \] Next, subtract 6 from both sides: \[ -3x \leq \frac{1}{3} - 6 \] Convert 6 to a fraction: \[ -3x \leq \frac{1}{3} - \frac{18}{3} = \frac{-17}{3} \] Now, divide both sides by -3, remembering to flip the inequality: \[ x \geq \frac{17}{9} \] --- The solution to the inequality means that any value of \( x \) that is greater than or equal to \( \frac{17}{9} \) satisfies the condition. This can be understood as "x can take on values starting from \( \frac{17}{9} \) and extending infinitely larger." --- To verify the solution, we can choose two numbers from the solution set. First, let's try \( x = 2 \): \[ -3(2-2) \leq \frac{1}{3} \rightarrow 0 \leq \frac{1}{3} \quad \text{(True)} \] Now let's test \( x = 3 \): \[ -3(3-2) \leq \frac{1}{3} \rightarrow -3 \leq \frac{1}{3} \quad \text{(True)} \] Since both numbers work, our solution \( x \geq \frac{17}{9} \) is verified!