The prices of 14 different randomly selected 35 -mm compact cameras are as follows: \( \$ 169, \$ 225, \$ 129, \$ 175, \$ 299, \$ 140, \$ 215, \$ 239, \$ 1, \$ 99, \$ 149, \$ 219 \), \( \$ 120 \), and \( \$ 144 \). Find Quartile 1 (Q1). 299 1 none of these 159 219
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find Quartile 1 (Q1), we first need to arrange the given camera prices in ascending order: \( \$ 1, \$ 99, \$ 120, \$ 129, \$ 140, \$ 144, \$ 149, \$ 155, \$ 169, \$ 175, \$ 215, \$ 219, \$ 225, \$ 239, \$ 299 \). Next, since there are 14 data points, we can find Q1 by locating the value at the 25th percentile position. This can be calculated using the formula \( Q1 = \frac{1}{4}(n + 1) \), where \( n \) is the number of observations. Substituting \( n = 14 \), we get \( Q1 = \frac{1}{4}(14 + 1) = \frac{15}{4} = 3.75 \). This means Q1 is located between the 3rd and 4th data points. Since the 3rd data point is \( 120 \) and the 4th is \( 129 \), we can calculate: \[ Q1 = 120 + 0.75 \times (129 - 120) = 120 + 6.75 = 126.75 \] Thus, Quartile 1 (Q1) is \( 126.75 \). However, since this doesn't match any of the listed options, the closest answer is "none of these."