Pregunta
If a solid has semicircular cross-sections with a radius of \( r = 2 \), find the area of one semicircular cross-section.
Ask by Conner Burgess. in South Africa
Jan 30,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The area of one semicircular cross-section is \( 2\pi \) square units.
Solución
To find the area of a semicircular cross-section with a radius \( r = 2 \), follow these steps:
1. **Calculate the area of a full circle:**
\[
\text{Area of full circle} = \pi r^2
\]
Substituting \( r = 2 \):
\[
\pi (2)^2 = \pi \times 4 = 4\pi
\]
2. **Find the area of the semicircle:**
A semicircle is half of a full circle, so:
\[
\text{Area of semicircle} = \frac{1}{2} \times \text{Area of full circle} = \frac{1}{2} \times 4\pi = 2\pi
\]
**Final Answer:**
The area of one semicircular cross-section is \( 2\pi \) square units.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the area of one semicircular cross-section, you can use the formula for the area of a semicircle, which is given by: \[ A = \frac{1}{2} \pi r^2 \] Given that the radius \( r \) is 2, you can substitute this value into the formula: \[ A = \frac{1}{2} \pi (2)^2 = \frac{1}{2} \pi \cdot 4 = 2\pi \] So, the area of one semicircular cross-section is \( 2\pi \) square units.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium