Pregunta
upstudy study bank question image url

Question 11 Suppose a long term investment is modeled by the exponential function \( V(t)=30(25)^{\frac{1}{20}} \) where \( V(t) \) is the total value after \( t \) year. What does 25 represent in the equation? the growth factor the number of years the interest rate thitial deposit

Ask by Martin Carter. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

25 represents the growth factor in the equation.

Solución

To understand what the number 25 represents in the exponential function \( V(t) = 30(25)^{\frac{1}{20}} \), let's analyze the components of the equation. 1. **Exponential Function Structure**: The general form of an exponential growth function is \( V(t) = P \cdot (1 + r)^t \), where: - \( P \) is the initial amount (or principal), - \( r \) is the growth rate (interest rate), - \( t \) is the time in years. 2. **Identifying Components**: - In the given function, \( 30 \) is the initial deposit (or principal). - The term \( (25)^{\frac{1}{20}} \) indicates a growth factor, as it is raised to a power that relates to time. 3. **Understanding the Number 25**: - The base of the exponent (25) typically represents the growth factor in an exponential function. It indicates how much the investment grows over a specific period. - The exponent \( \frac{1}{20} \) suggests that this growth factor is being applied over a time frame of 20 years. Based on this analysis, the number 25 represents the **growth factor** in the equation. Thus, the correct answer is: - **the growth factor**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the equation \( V(t)=30(25)^{\frac{1}{20}} \), the number 25 represents the growth factor in your investment model. It indicates that for every cycle of time defined (in this case, it appears to be per year), the value of the investment increases by a factor of 25. Essentially, this number encapsulates how much the investment grows over that defined period. To visualize this a bit more, consider this: if you're planting seeds in your garden, the growth factor would reflect how much those seeds multiply over time. With a growth factor of 25, you're not just planting, you're cultivating a flourishing garden of financial returns! This kind of exponential growth demonstrates the power of compounding in investments—making your money work for you as time goes on.

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad