Pregunta
upstudy study bank question image url

Tomorrow is Scott's family reunion, so Scott and his dad are making their famous chocolat beet cake. At the grocery store, Scott puts some beets on the scale. The recipe calls for or \( 1 \frac{1}{4} \) pounds of beets, so Scott removes \( \frac{1}{2} \) of a pound of beets from the scale. Now he has exactly what he needs for the cake. Use an equation to find the weight of the beets that Scott first puts on the scale. To write a fraction, use a slash (/) to separate the numerator and denominator.

Ask by Sullivan Bates. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Scott first puts \( \frac{7}{4} \) pounds of beets on the scale.

Solución

Let's denote the weight of the beets that Scott first puts on the scale as \( x \) pounds. According to the information given: 1. The recipe calls for \( 1 \frac{1}{4} \) pounds of beets. 2. Scott removes \( \frac{1}{2} \) of a pound of beets from the scale. We can set up an equation to find the weight of the beets that Scott first puts on the scale. The equation is: \[ x - \frac{1}{2} = 1 \frac{1}{4} \] Now, we can solve this equation to find the value of \( x \). Solve the equation by following steps: - step0: Solve for \(x\): \(x-\frac{1}{2}=1\frac{1}{4}\) - step1: Convert the expressions: \(x-\frac{1}{2}=\frac{5}{4}\) - step2: Move the constant to the right side: \(x=\frac{5}{4}+\frac{1}{2}\) - step3: Add the numbers: \(x=\frac{7}{4}\) The weight of the beets that Scott first puts on the scale is \( \frac{7}{4} \) pounds or 1.75 pounds.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's say the weight of the beets that Scott first puts on the scale is \( x \) pounds. According to the problem, Scott removes \( \frac{1}{2} \) pound from this weight, and then he has exactly \( 1 \frac{1}{4} \) pounds. We can set up the equation: \[ x - \frac{1}{2} = 1 \frac{1}{4} \] First, convert \( 1 \frac{1}{4} \) to an improper fraction: \[ 1 \frac{1}{4} = \frac{5}{4} \] Now, the equation looks like this: \[ x - \frac{1}{2} = \frac{5}{4} \] To solve for \( x \), add \( \frac{1}{2} \) to both sides. First, we need to convert \( \frac{1}{2} \) to quarters to combine fractions: \[ \frac{1}{2} = \frac{2}{4} \] Now we have: \[ x = \frac{5}{4} + \frac{2}{4} \] Adding these fractions gives: \[ x = \frac{7}{4} \] So, Scott first put \( \frac{7}{4} \) pounds of beets on the scale. To express this in a more familiar format, \( \frac{7}{4} \) is equivalent to \( 1 \frac{3}{4} \) pounds. Happy baking!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad