Pregunta
upstudy study bank question image url

Find the derivative of the function. \[ f(t)=t \cos (t)+t^{2} \sin (t) \]

Ask by George Medina. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of \( f(t) = t \cos(t) + t^{2} \sin(t) \) is: \[ f\,'(t) = (1 + t^{2})\,\cos t\;+\;t\,\sin t \]

Solución

To find the derivative of the function \[ f(t) = t \cos(t) + t^{2} \sin(t), \] we'll apply the **product rule** for differentiation, which states that if you have a function \( u(t) \cdot v(t) \), its derivative is: \[ \frac{d}{dt}[u(t) \cdot v(t)] = u'(t) \cdot v(t) + u(t) \cdot v'(t). \] Let's differentiate each term of \( f(t) \) separately. ### 1. Differentiating \( t \cos(t) \): Let \( u(t) = t \) and \( v(t) = \cos(t) \). - \( u'(t) = 1 \) - \( v'(t) = -\sin(t) \) Applying the product rule: \[ \frac{d}{dt}[t \cos(t)] = 1 \cdot \cos(t) + t \cdot (-\sin(t)) = \cos(t) - t \sin(t) \] ### 2. Differentiating \( t^{2} \sin(t) \): Let \( u(t) = t^{2} \) and \( v(t) = \sin(t) \). - \( u'(t) = 2t \) - \( v'(t) = \cos(t) \) Applying the product rule: \[ \frac{d}{dt}[t^{2} \sin(t)] = 2t \cdot \sin(t) + t^{2} \cdot \cos(t) = 2t \sin(t) + t^{2} \cos(t) \] ### Combining the Results: Add the derivatives of both terms to get the derivative of \( f(t) \): \[ f'(t) = (\cos(t) - t \sin(t)) + (2t \sin(t) + t^{2} \cos(t)) \] Simplifying: \[ f'(t) = \cos(t) + t \sin(t) + t^{2} \cos(t) \] This can be factored for a more compact expression: \[ f'(t) = (1 + t^{2}) \cos(t) + t \sin(t) \] ### Final Answer: \[ f\,'(t) = (1 + t^{2})\,\cos t\;+\;t\,\sin t \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the derivative of the function \( f(t) = t \cos(t) + t^2 \sin(t) \), we'll apply the product rule, which states that if you have a function in the form of \( u(t) v(t) \), then its derivative is \( u'(t)v(t) + u(t)v'(t) \). 1. For the first term \( t \cos(t) \): - Let \( u = t \) and \( v = \cos(t) \). - Thus, \( u' = 1 \) and \( v' = -\sin(t) \). - The derivative is: \[ (u' v + u v') = (1 \cdot \cos(t) + t \cdot (-\sin(t))) = \cos(t) - t \sin(t). \] 2. For the second term \( t^2 \sin(t) \): - Let \( u = t^2 \) and \( v = \sin(t) \). - Thus, \( u' = 2t \) and \( v' = \cos(t) \). - The derivative is: \[ (u' v + u v') = (2t \cdot \sin(t) + t^2 \cdot \cos(t)). \] Now, combine the derivatives from both terms: \[ f'(t) = \left( \cos(t) - t \sin(t) \right) + \left( 2t \sin(t) + t^2 \cos(t) \right). \] Combining like terms yields: \[ f'(t) = \cos(t) + (2t - t) \sin(t) + t^2 \cos(t) = \cos(t) + t \sin(t) + t^2 \cos(t). \] Finally, simplify the expression: \[ f'(t) = (1 + t^2) \cos(t) + t \sin(t). \] Thus, the derivative of the function is: \[ f'(t) = (1 + t^2) \cos(t) + t \sin(t). \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad