\( y=\sinh (1) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Did you know that the hyperbolic sine function, \( \sinh(x) \), is defined as \( \frac{e^x - e^{-x}}{2} \)? So, when you calculate \( \sinh(1) \), you're actually plugging in your value into this formula: \( \sinh(1) = \frac{e^1 - e^{-1}}{2} \). This means you'll get a numerical value that beautifully combines the exponential growth and decay of the \( e \) function! In real-world applications, hyperbolic functions like \( \sinh \) are used in areas like engineering, physics, and even in describing the shapes of arches and bridges. They can help model processes involving constant acceleration, such as the motion of an object under gravity, showcasing how mathematics elegantly mirrors the world around us!