Question
upstudy study bank question image url

8. \( h(x)=\ln \left(x+e^{3 x}\right) \)

Ask by Salazar Mckenzie. in Puerto Rico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( h(x) = \ln\left(x + e^{3x}\right) \) es \( h'(x) = \frac{1 + 3e^{3x}}{x + e^{3x}} \).

Solution

Para encontrar la derivada de la función \( h(x) = \ln\left(x + e^{3x}\right) \), seguimos los siguientes pasos: ### Paso 1: Aplicar la regla de la derivada del logaritmo natural La derivada de \( \ln(u) \) respecto a \( x \) es \( \frac{u'}{u} \), donde \( u \) es una función de \( x \). Aquí, \( u = x + e^{3x} \). ### Paso 2: Encontrar la derivada de \( u \) Calculamos \( u' \): \[ u = x + e^{3x} \] \[ u' = \frac{d}{dx}(x) + \frac{d}{dx}(e^{3x}) = 1 + 3e^{3x} \] ### Paso 3: Aplicar la regla de la derivada Ahora, aplicamos la regla mencionada en el Paso 1: \[ h'(x) = \frac{u'}{u} = \frac{1 + 3e^{3x}}{x + e^{3x}} \] ### Resultado Final Por lo tanto, la derivada de \( h(x) \) es: \[ h'(x) = \frac{1 + 3e^{3x}}{x + e^{3x}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that the natural logarithm functions are deeply tied to exponential growth, which can be seen in various fields like finance and biology? The function \( h(x) = \ln(x + e^{3x}) \) blends polynomial and exponential elements, showcasing how logarithmic functions can help simplify expressions involving growth rates while also enabling us to solve for roots and analyze limits! When working with logarithmic functions, a common mistake is forgetting that they are only defined for positive arguments. Ensure that \( x + e^{3x} > 0 \) for all \( x \) by recognizing that \( e^{3x} \) is always positive while \( x \) could be negative. This will help avoid domain issues and streamline your problem-solving process!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy