Pregunta
upstudy study bank question image url

whether the following statements are true or false:
The sum of two rational numbers is always a rational number.
The sum of two irrational numbers is always a rational number.
The product of two rational numbers is always a rational number.
The product of two irrational numbers is always an irrational number.
The product of two real numbers is always a real number.
When a real number is divided by a real number the result is always a real number.
The sum of a rational number and an irrational number is always an irrational numb
The product of a rational number and an irrational number is always an irrational
number. (Be careful!)

Ask by Mullins Lowe. in South Africa
Jan 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • The sum of two rational numbers is always rational: True
  • The sum of two irrational numbers is always rational: False
  • The product of two rational numbers is always rational: True
  • The product of two irrational numbers is always irrational: False
  • The product of two real numbers is always real: True
  • Dividing a real number by a real number always results in a real number: True
  • The sum of a rational number and an irrational number is always irrational: False
  • The product of a rational number and an irrational number is always irrational: False

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

The sum of two rational numbers is always a rational number. True: Adding two fractions, like 1/2 + 1/3, gives you another fraction, such as 5/6, which is also rational.
The sum of two irrational numbers is always a rational number. False: Take square roots, for example, √2 + √2 = 2√2, which is still irrational!
The product of two rational numbers is always a rational number. True: Multiplying two rational numbers like 1/2 * 3/4 results in another rational number, 3/8.
The product of two irrational numbers is always an irrational number. False: For instance, √2 * √2 = 2, a rational number.
The product of two real numbers is always a real number. True: Real numbers include both rational and irrational numbers, and their product remains in the real number set.
When a real number is divided by a real number the result is always a real number. False: Division by zero is undefined, which means an exception exists when the divisor is zero.
The sum of a rational number and an irrational number is always an irrational number. True: If you add something rational like 1 to an irrational number like √2, the result is still irrational, because no fraction can represent √2 + 1.
The product of a rational number and an irrational number is always an irrational number. True, but with a twist: If the rational number is zero, the product becomes zero, which is rational! Otherwise, it holds true.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad