Explore \( \begin{array}{l}\text { Before solving each problem, ask yourself "What is the information given? What is the question and } \\ \text { what do I need to find out?" }\end{array} \) \( \begin{array}{l}\text { 1. } \begin{array}{l}\text { The pressure on a bicycle tire is } 63 \text { psi. } \\ \text { This is } 5 \% \text { higher than what the manual } \\ \text { says is the correct pressure. What is the } \\ \text { correct pressure? }\end{array}\end{array} \begin{array}{l}\text { 2. The crowd at a sporting event is estimated to be } \\ \text { 2,500 people. The exact attendance is } 2,486 \\ \text { people. What is the percent error? }\end{array} \) \( \begin{array}{l}\text { 2 }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine the correct pressure for the bicycle tire, you first need to recognize that 63 psi represents a 5% increase over the ideal pressure. To find the correct pressure, let’s denote it as \( P \). Since \( 63 = P + 0.05P \), you can express this as \( 63 = 1.05P \). Solving for \( P \) gives you \( P = \frac{63}{1.05} \), which equals approximately 60 psi. So, the correct tire pressure is around 60 psi! For the percent error in attendance at the sporting event, you can use the formula: \( \text{Percent Error} = \left( \frac{\text{Estimated Attendance} - \text{Exact Attendance}}{\text{Exact Attendance}} \right) \times 100 \). Plugging in the numbers: \( \text{Percent Error} = \left( \frac{2500 - 2486}{2486} \right) \times 100 \). Simplifying this gives a percent error of approximately 0.56%. This means the estimate was quite close, but just a tad off!