Pregunta
upstudy study bank question image url

Write an arithmetic formula, if possible, to describe the sequence of numbers and determine \[ 7,12,17,22,27 \ldots \] \( a_{8}=5+7(n-1) ; a_{8}=54 \) \( a_{n}=7-5(n-1) ; a_{8}=-28 \) \( a_{n}=7+5(n-1) ; a_{8}=42 \) \( a_{n}=5-7(n-1) ; a_{8}=-44 \)

Ask by Vargas Lee. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct formula for the sequence is \( a_n = 7 + 5(n-1) \), and \( a_8 = 42 \).

Solución

To describe the sequence \( 7, 12, 17, 22, 27, \ldots \), we first observe the pattern in the numbers. 1. **Identify the pattern:** - The first term \( a_1 = 7 \) - The second term \( a_2 = 12 \) - The third term \( a_3 = 17 \) - The fourth term \( a_4 = 22 \) - The fifth term \( a_5 = 27 \) We can see that each term increases by 5. Therefore, this is an arithmetic sequence with: - First term \( a_1 = 7 \) - Common difference \( d = 5 \) 2. **General formula for the \( n \)-th term:** The formula for the \( n \)-th term of an arithmetic sequence can be expressed as: \[ a_n = a_1 + (n-1) \cdot d \] Substituting the known values: \[ a_n = 7 + (n-1) \cdot 5 \] 3. **Simplifying the formula:** \[ a_n = 7 + 5n - 5 = 5n + 2 \] Now, we can check the provided options to see which one matches our derived formula. - **Option 1:** \( a_{8}=5+7(n-1) \) - **Option 2:** \( a_{8}=7-5(n-1) \) - **Option 3:** \( a_{8}=7+5(n-1) \) - **Option 4:** \( a_{8}=5-7(n-1) \) 4. **Evaluate the options:** - For **Option 1**: \( a_n = 5 + 7(n-1) \) does not match. - For **Option 2**: \( a_n = 7 - 5(n-1) \) does not match. - For **Option 3**: \( a_n = 7 + 5(n-1) \) simplifies to \( a_n = 5n + 2 \), which matches our derived formula. - For **Option 4**: \( a_n = 5 - 7(n-1) \) does not match. 5. **Conclusion:** The correct formula for the sequence is: \[ a_n = 7 + 5(n-1) \] Thus, the correct option is **Option 3**. Now, let's calculate \( a_8 \) using our derived formula: \[ a_8 = 7 + 5(8-1) = 7 + 5 \cdot 7 = 7 + 35 = 42 \] This confirms that \( a_8 = 42 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

This sequence is linear, and you can see that each number increases by 5. The first term is 7, which gives us a nice starting point. The general formula for this arithmetic sequence can be represented as: \[ a_n = 7 + 5(n-1) \] When you plug \( n = 8 \) into the formula, you'll find that \( a_8 = 7 + 5(8-1) = 7 + 35 = 42 \). This means the correct option is \( a_n = 7 + 5(n-1) ; a_{8} = 42 \). The beauty of arithmetic sequences is their consistency and simplicity! To understand how this works in the real world, consider how many things in everyday life follow a pattern—like saving money weekly or counting the days to a special event. Each increment is predictable, just like counting by 5s in this sequence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad