Pregunta
Simplify. \[ u^{-3} \cdot u^{-9} \] Write your answer with a positive exponent only. \begin{tabular}{ll}\( \square \) & \( \square \) \\ \( \square \) & \( \square \) \\ \hline\end{tabular}
Ask by Vaughan Cummings. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{1}{u^{12}} \).
Solución
Calculate or simplify the expression \( u^{-3} \cdot u^{-9} \).
Simplify the expression by following steps:
- step0: Solution:
\(u^{-3}\times u^{-9}\)
- step1: Simplify the expression:
\(u^{-3-9}\)
- step2: Subtract the numbers:
\(u^{-12}\)
- step3: Simplify:
\(\frac{1}{u^{12}}\)
The simplified expression is \( \frac{1}{u^{12}} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify \( u^{-3} \cdot u^{-9} \), we can apply the property of exponents that states when you multiply two powers with the same base, you add the exponents. Thus, we have: \[ u^{-3} \cdot u^{-9} = u^{-3 + (-9)} = u^{-12}. \] Now, to express this with a positive exponent, we recall that \( u^{-n} = \frac{1}{u^n} \). Therefore: \[ u^{-12} = \frac{1}{u^{12}}. \] Hence, the simplified form is: \[ \frac{1}{u^{12}}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium