Let \( R \) be the region bounded by the following curves. Use the method of your choice to find the volume of the solid generated when \( R \) is revolved about the \( x \)-axis. \( y=4 x^{2} \) and \( y=5-x^{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the volume of the solid generated when the region \( R \) bounded by the curves \( y = 4x^2 \) and \( y = 5 - x^2 \) is revolved about the \( x \)-axis, we first find the points of intersection. Setting the equations equal to each other: \[ 4x^2 = 5 - x^2 \] Rearranging gives: \[ 5x^2 + 5 - 0 = 0 \implies 5x^2 = 5 \implies x^2 = 1 \implies x = \pm 1 \] Then, \( R \) is bounded horizontally between \( x = -1 \) and \( x = 1 \). Using the washer method, the volume \( V \) can be calculated using: \[ V = \pi \int_{-1}^{1} \left[(5 - x^2)^2 - (4x^2)^2\right] \, dx \] Calculating the individual components: 1. The outer function (top curve) is \( y = 5 - x^2 \), and its area is \( (5 - x^2) \). 2. The inner function (bottom curve) is \( y = 4x^2 \). Substituting the expressions: \[ V = \pi \int_{-1}^{1} \left[(5 - x^2)^2 - (4x^2)^2\right] \, dx \] Expanding these: 1. \( (5 - x^2)^2 = 25 - 10x^2 + x^4 \) 2. \( (4x^2)^2 = 16x^4 \) So now we have: \[ V = \pi \int_{-1}^{1} [25 - 10x^2 + x^4 - 16x^4] \, dx = \pi \int_{-1}^{1} [25 - 10x^2 - 15x^4] \, dx \] This integral can be computed as: \[ V = \pi \left[ 25x - \frac{10}{3}x^3 - 3x^5 \right]_{-1}^{1} \] Evaluating at the bounds: \[ V = \pi \left[ (25 - \frac{10}{3} - 3) - (25 + \frac{10}{3} + 3) \right] = \pi \left[ 25 - \frac{10}{3} - 3 + 25 + \frac{10}{3} + 3 \right] = 2 \cdot 25 = 50\pi \] Thus, the volume of the solid generated is: \[ \boxed{50\pi} \]