Pregunta
upstudy study bank question image url

[-/1 Points] DETAILS MY NOTES HARMATHAP12 9.4.050. The monthly output of a certain product is \[ Q(x)=2300 x^{5 / 2} \] mhere \( x \) is the capital investhent in milions of dollars. Find dQidx, which can be used to estimate the effect on the output if an additional capital investment of \( \$ 1 \) milion is made. \[ d Q / d x= \] \( \square \) Need Help? Paad 12 Farch 1 SUBMIT ANSWER

Ask by Reese Lane. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative \( \frac{dQ}{dx} = 5750x\sqrt{x} \) shows how the output changes with each additional million dollars invested.

Solución

Calculate or simplify the expression \( \frac{d}{dx}(2300x^{5/2}) \). Evaluate the derivative by following steps: - step0: Solution: \(\frac{d}{dx}\left(\left(2300x^{\frac{5}{2}}\right)\right)\) - step1: Evaluate: \(\frac{d}{dx}\left(2300x^{\frac{5}{2}}\right)\) - step2: Use differentiation rules: \(2300\times \frac{d}{dx}\left(x^{\frac{5}{2}}\right)\) - step3: Find the derivative: \(2300\times \frac{5}{2}x^{\frac{3}{2}}\) - step4: Multiply the terms: \(5750x^{\frac{3}{2}}\) - step5: Simplify: \(5750x\sqrt{x}\) The first-order derivative of \( Q(x) = 2300x^{5/2} \) with respect to \( x \) is \( \frac{dQ}{dx} = 5750x\sqrt{x} \). This derivative can be used to estimate the effect on the output if an additional capital investment of $1 million is made. The derivative represents the rate of change of the output with respect to the capital investment.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \(\frac{dQ}{dx}\), we need to differentiate the function \(Q(x) = 2300x^{5/2}\) with respect to \(x\). Applying the power rule, we have: \[ \frac{dQ}{dx} = 2300 \cdot \frac{5}{2} x^{3/2} = 5750 x^{3/2} \] This derivative \(\frac{dQ}{dx}\) tells us the rate of change of output with respect to capital investment. So whenever you invest an additional million dollars, multiply \(5750\) by \(x^{3/2}\) (where \(x\) is the current investment) to estimate the increase in output! Let’s look at some real-world applications! In industries where capital investment is essential, knowing how output changes with investment is invaluable. For instance, in manufacturing, a company can predict how much additional revenue it could generate per million invested, helping to make better financial decisions. Using derivatives helps businesses optimize their capital allocation and forecast growth potential accurately!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad