Pregunta
\( 1 \leftarrow \) A person buys a phone for \( \$ 87 \) and signs up for a single-line phone plan with 2000 monthly anytime minutes. The plan costs \( \$ 113.92 \) per month. Write an equation that can be used to determine the total cost, \( C(t) \), of this phone plan for \( t \) months. Then, find the cost for 21 months, assuming that the number of minutes the person uses does not exceed 2000 per month. An equation that can be used to determine the total cost, \( C(t) \), of the phone plan for \( t \) months is \( C(t)=\square \) (Use integers or decimals for any numbers in the expression.)
Ask by Dickson Sanders. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The total cost \( C(t) \) for \( t \) months is \( C(t) = 87 + 113.92t \). For 21 months, the cost is \$2,479.32.
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Descubrir
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
The Deep Dive
To determine the total cost, you need to account for both the initial phone cost and the monthly plan cost. The equation can be represented as: \[ C(t) = 87 + 113.92t \] Now, to find the cost for 21 months, plug \( t = 21 \) into the equation: \[ C(21) = 87 + 113.92 \times 21 \] Calculating this gives: \[ C(21) = 87 + 2392.32 = 2479.32 \] So the total cost for 21 months is \( \$ 2479.32 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium