Jse synthetic division to simplify \( \frac{x^{3}-19 x+12}{x-4} \) Write your answer in the form \( \mathrm{q}(\mathrm{x})+\frac{\mathrm{r}}{\mathrm{d}(\mathrm{x})} \), where \( \mathrm{q}(\mathrm{x}) \) is a polynomial, r is an nteger, and \( \mathrm{d}(\mathrm{x}) \) is a linear polynomial. Simplify any fractions.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify \( \frac{x^{3}-19 x+12}{x-4} \) using synthetic division, we start by setting up the synthetic division for the given polynomial with the divisor \( x - 4 \). 1. The coefficients of \( x^3 - 19x + 12 \) are: \( 1, 0, -19, 12 \) (note the zero coefficient for \( x^2 \)). 2. We perform synthetic division using \( 4 \) (the zero of \( x - 4 \)): ``` 4 | 1 0 -19 12 | 4 16 -12 ---------------------- 1 4 -3 0 ``` 3. The bottom row gives us the coefficients of the quotient: \( 1x^2 + 4x - 3 \) with a remainder of \( 0 \). This means \( \frac{x^3 - 19x + 12}{x - 4} = x^2 + 4x - 3 + \frac{0}{x - 4} \). The final simplified result is: \[ q(x) = x^2 + 4x - 3, \quad r = 0, \quad d(x) = x - 4. \] Therefore, in the required format, the answer is: \[ x^2 + 4x - 3 + \frac{0}{x - 4} \] This simplifies to just \( q(x) = x^2 + 4x - 3 \) since the remainder is zero.