Pregunta
upstudy study bank question image url

Joah puts \( \$ 3,084.00 \) into an account to use for school expenses. The account earns \( 3.65 \% \) nterest, compounded annually. How much will be in the account after 4 years? Use the formula \( A=P\left(1+\frac{r}{n}\right)^{n t} \), where \( A \) is the balance (final amount), \( P \) is the principal (starting amount), \( r \) is the interest rate expressed as a decimal, \( n \) is the number of times per year that the interest is compounded, and \( t \) is the time in years. Round your answer to the nearest cent.

Ask by Newton Estrada. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 4 years, Joah will have $3,559.52 in the account.

Solución

To find the amount in the account after 4 years, we can use the formula for compound interest: \[ A = P\left(1 + \frac{r}{n}\right)^{nt} \] Given: - Principal (P) = $3,084.00 - Interest rate (r) = 3.65% = 0.0365 (as a decimal) - Compounded annually, so n = 1 - Time (t) = 4 years Substitute the given values into the formula: \[ A = 3084\left(1 + \frac{0.0365}{1}\right)^{1 \times 4} \] Now, we can calculate the amount in the account after 4 years. Calculate the value by following steps: - step0: Calculate: \(3084\left(1+0.0365\right)^{4}\) - step1: Add the numbers: \(3084\times 1.0365^{4}\) - step2: Convert the expressions: \(3084\left(\frac{2073}{2000}\right)^{4}\) - step3: Simplify: \(3084\times \frac{2073^{4}}{2000^{4}}\) - step4: Rewrite the expression: \(4\times 771\times \frac{2073^{4}}{2000^{4}}\) - step5: Rewrite the expression: \(4\times 771\times \frac{2073^{4}}{16^{4}\times 125^{4}}\) - step6: Rewrite the expression: \(4\times 771\times \frac{2073^{4}}{4^{8}\times 125^{4}}\) - step7: Reduce the numbers: \(771\times \frac{2073^{4}}{4^{7}\times 125^{4}}\) - step8: Multiply the fractions: \(\frac{771\times 2073^{4}}{16384\times 125^{4}}\) The amount in the account after 4 years will be approximately $3,559.52. Therefore, after 4 years, Joah will have $3,559.52 in the account.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much Joah will have in the account after 4 years, we can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Given: - \( P = 3,084.00 \) (the principal) - \( r = 3.65\% = 0.0365 \) (interest rate as a decimal) - \( n = 1 \) (compounded annually) - \( t = 4 \) (time in years) Substituting the values into the formula: \[ A = 3,084 \left(1 + \frac{0.0365}{1}\right)^{1 \cdot 4} \] \[ A = 3,084 \left(1 + 0.0365\right)^{4} \] \[ A = 3,084 \left(1.0365\right)^{4} \] Now calculate \( (1.0365)^4 \): \[ (1.0365)^4 \approx 1.1516 \] Now multiply this by the principal: \[ A \approx 3,084 \times 1.1516 \approx 3,548.57 \] So, after rounding to the nearest cent, the amount in the account after 4 years will be approximately **$3,548.57**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad