Pregunta
upstudy study bank question image url

Answer the following questions for the function

defined on the interval .
is concave down on the interval
to
is concave up on the interval
to
The inflection point for this function is at
The minimum for this function occurs at
The maximum for this function occurs at
T

Ask by Ortiz Jimenez. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • is concave down from to .
  • is concave up from to .
  • The inflection point is at .
  • The minimum occurs at .
  • The maximum occurs at .

Solución

Step 1. Find the first derivative .
We have
Using the product rule:
Since
and using the chain rule for
we have
Thus,
To combine these, write:

Step 2. Find the second derivative .
We have
Let and . Then,
Differentiate the numerator and denominator:
and as before,
Since
we have
To combine the terms in the numerator, obtain a common denominator:
so
Simplify the numerator:
so
Thus,

Step 3. Determine the intervals of concavity.
The denominator is always positive. Therefore, the sign of is determined by the numerator .
Since
the sign of is the same as the sign of .
  • For : (concave down).
  • For : (concave up).
Thus:
  • is concave down on the interval from to .
  • is concave up on the interval from to .
The inflection point occurs where , which is when .

Step 4. Find the minimum and maximum on .
Since
is increasing on the entire interval.
Therefore:
  • The minimum occurs at the left endpoint .
  • The maximum occurs at the right endpoint .

Final Answers:
  • is concave down on the interval to .
  • is concave up on the interval to .
  • The inflection point for this function is at .
  • The minimum for this function occurs at .
  • The maximum for this function occurs at .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To analyze the function , we first need to find its concavity and critical points.

Concavity:

  1. Second Derivative Test: We find the first and second derivatives of .
  2. The first derivative can be computed using the product and chain rules. After simplification, we find .
  3. We then take the second derivative and set it equal to zero to find the points of inflection.
Calculating these yields:
  • is concave down on the interval to .
  • is concave up on the interval to .

Inflection Point:

The inflection point occurs where the second derivative changes sign, which is at .

Extrema:

  1. Critical Points: Setting will help find where maxima and minima occur.
  2. After finding the critical points, evaluate at these points and the endpoints of the interval.
This leads to the following:
  • The minimum for occurs at .
  • The maximum for occurs at .
To summarize:
  • is concave down on the interval to .
  • is concave up on the interval to .
  • The inflection point for this function is at .
  • The minimum for this function occurs at .
  • The maximum for this function occurs at .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad