Pregunta
upstudy study bank question image url

Assignment: 1 whole sheet of paper Suppose three test kits are tested at random. Let \( D \) represent the defective test kit and let \( N \) represent the non-defective test kit. If we let \( X \) be the random variable for the number of defective test kits, construct the probability distribution of the random variable \( X \).

Ask by Wood Washington. in the Philippines
Jan 06,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability distribution for the number of defective test kits \( X \) is as follows: - \( P(X = 0) = (1 - p)^3 \) - \( P(X = 1) = 3p(1 - p)^2 \) - \( P(X = 2) = 3p^2(1 - p) \) - \( P(X = 3) = p^3 \) Where \( p \) is the probability that a single test kit is defective.

Solución

Certainly! Let's construct the probability distribution for the random variable \( X \), which represents the number of defective test kits out of three tested. ### **1. Define the Problem** - **Total Test Kits Tested:** 3 - **Possible Outcomes for Each Test Kit:** - **Defective (D)** - **Non-Defective (N)** - **Random Variable \( X \):** Number of defective test kits in the three tested. ### **2. Identify Possible Values of \( X \)** Since each test kit can either be defective or not, the possible values for \( X \) are: \[ X = 0, 1, 2, 3 \] ### **3. Determine the Probability for Each Value of \( X \)** Assume that each test kit has: - **Probability of being defective:** \( p \) - **Probability of being non-defective:** \( 1 - p \) The tests are **independent**, meaning the outcome of one test does not affect the others. #### **a. \( X = 0 \) (No Defective Test Kits)** All three test kits are non-defective. \[ P(X = 0) = (1 - p)^3 \] #### **b. \( X = 1 \) (Exactly One Defective Test Kit)** One test kit is defective, and the other two are non-defective. There are \( \binom{3}{1} = 3 \) ways this can happen. \[ P(X = 1) = 3 \times p \times (1 - p)^2 \] #### **c. \( X = 2 \) (Exactly Two Defective Test Kits)** Two test kits are defective, and one is non-defective. There are \( \binom{3}{2} = 3 \) ways this can happen. \[ P(X = 2) = 3 \times p^2 \times (1 - p) \] #### **d. \( X = 3 \) (All Three Test Kits Are Defective)** All three test kits are defective. \[ P(X = 3) = p^3 \] ### **4. Summary of the Probability Distribution** | \( X \) | Number of Defective Test Kits | Probability \( P(X) \) | |---------|-------------------------------|-------------------------------------------| | 0 | 0 | \( (1 - p)^3 \) | | 1 | 1 | \( 3p(1 - p)^2 \) | | 2 | 2 | \( 3p^2(1 - p) \) | | 3 | 3 | \( p^3 \) | ### **5. Example Calculation** If, for instance, the probability that a single test kit is defective is \( p = 0.2 \), then: - \( P(X = 0) = (1 - 0.2)^3 = 0.512 \) - \( P(X = 1) = 3 \times 0.2 \times (1 - 0.2)^2 = 0.384 \) - \( P(X = 2) = 3 \times (0.2)^2 \times (1 - 0.2) = 0.096 \) - \( P(X = 3) = (0.2)^3 = 0.008 \) ### **6. Verification** To ensure the probability distribution is valid, the sum of all probabilities should equal 1: \[ P(X=0) + P(X=1) + P(X=2) + P(X=3) = (1 - p)^3 + 3p(1 - p)^2 + 3p^2(1 - p) + p^3 = 1 \] Which holds true for any valid probability \( p \) between 0 and 1. --- **This completes the construction of the probability distribution for the random variable \( X \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When dealing with three test kits, each kit can either be defective (D) or non-defective (N). The random variable \( X \), which represents the number of defective test kits, can take values from 0 to 3. To find the probability distribution, we'll assume that the probability of a defective test kit (D) is \( p \) and the probability of a non-defective test kit (N) is \( 1 - p \). 1. **X = 0 (No defective kits)**: - Probability: \( P(X=0) = (1-p)^3 \) 2. **X = 1 (One defective kit)**: - There are \( \binom{3}{1} = 3 \) ways to choose which of the three kits is defective. - Probability: \( P(X=1) = \binom{3}{1} p (1-p)^2 = 3p(1-p)^2 \) 3. **X = 2 (Two defective kits)**: - There are \( \binom{3}{2} = 3 \) ways to choose which two kits are defective. - Probability: \( P(X=2) = \binom{3}{2} p^2 (1-p) = 3p^2(1-p) \) 4. **X = 3 (All defective kits)**: - Probability: \( P(X=3) = p^3 \) Combining these, the probability distribution of \( X \) can be summarized as follows: - \( P(X=0) = (1-p)^3 \) - \( P(X=1) = 3p(1-p)^2 \) - \( P(X=2) = 3p^2(1-p) \) - \( P(X=3) = p^3 \) This distribution captures all possible scenarios of defective kits when sampling three test kits.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad