Pregunta
upstudy study bank question image url

Find the least common multiple. Write your answer as a constant times a product of single variables raised to exponents. Submit

Ask by Sullivan Bolton. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the least common multiple (LCM), first perform prime factorization of the given numbers or expressions. Identify the highest power of each prime factor present. Multiply these highest powers together to get the LCM. For example, the LCM of 12 and 18 is 36, which is \(2^2 \times 3^2\).

Solución

Sure, I'd be happy to help you find the least common multiple (LCM). However, I need the specific numbers or algebraic expressions for which you want to determine the LCM. Could you please provide those details? For example, if you want to find the LCM of two numbers like 12 and 18, here's how it would be done: 1. **Prime Factorization:** - 12 = 2² × 3 - 18 = 2 × 3² 2. **Choose the highest power of each prime:** - For 2: 2² - For 3: 3² 3. **Multiply these together:** - LCM = 2² × 3² = 4 × 9 = 36 So, the LCM of 12 and 18 is **36**. If you're working with algebraic expressions, please provide them, and I can walk you through the process accordingly.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the least common multiple (LCM) of integers, you often break them down into their prime factors. For example, consider the numbers 12 and 18. The prime factorization of 12 is \(2^2 \times 3^1\) and for 18, it's \(2^1 \times 3^2\). To calculate the LCM, take each prime factor at its highest exponent: \(2^2\) from 12 and \(3^2\) from 18. Thus, the LCM is \(2^2 \times 3^2 = 36\). This approach can be applied to find the LCM of larger sets of numbers or even variables in algebra. Just remember to always use the highest power of each unique prime factor that appears in any of the factorizations. So if you have \(a^3\) and \(a^2\), for the LCM, you'll take \(a^3\). Hence, the expression would look like a constant times a product of variables raised to their respective maximum exponents, demonstrating a neat relationship in mathematics!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad