Pregunta
upstudy study bank question image url

Solve the system of linear equations. \[ \begin{array}{rr}x-3 y+z= & 1 \\ 2 x-y-2 z= & 2 \\ x+2 y-3 z= & -1\end{array} \]

Ask by Carroll Floyd. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system of equations has no solution.

Solución

Solve the system of equations \( x-3y+z=1;2x-y-2z=2;x+2y-3z=-1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x-3y+z=1\\2x-y-2z=2\\x+2y-3z=-1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=1+3y-z\\2x-y-2z=2\\x+2y-3z=-1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}2\left(1+3y-z\right)-y-2z=2\\1+3y-z+2y-3z=-1\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}2+5y-4z=2\\1+5y-4z=-1\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}y=\frac{4z}{5}\\1+5y-4z=-1\end{array}\right.\) - step5: Substitute the value of \(y:\) \(1+5\times \frac{4z}{5}-4z=-1\) - step6: Simplify: \(1=-1\) - step7: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \\z \in \varnothing \end{array}\right.\) - step8: Rewrite: \((x, y, z) \in \varnothing\) The system of linear equations has no solution. This means that there are no values of \( x \), \( y \), and \( z \) that satisfy all three equations simultaneously.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the given system of linear equations: \[ \begin{array}{rr} x - 3y + z &= 1 \\ 2x - y - 2z &= 2 \\ x + 2y - 3z &= -1 \end{array} \] We can express the equations in matrix form \(A\mathbf{x}=\mathbf{b}\) where \[ A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -1 & -2 \\ 1 & 2 & -3 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}. \] Using the method of elimination, we can manipulate the equations. Let's solve the first equation for \(z\): 1. From the first equation, \(z = 1 - x + 3y\). 2. Substitute \(z\) in the second and third equations: Substituting into the second equation: \[ 2x - y - 2(1 - x + 3y) = 2 \implies 2x - y - 2 + 2x - 6y = 2 \implies 4x - 7y = 4 \implies 4x - 7y - 4 = 0 \quad \text{(Equation 4)} \] Substituting into the third equation: \[ x + 2y - 3(1 - x + 3y) = -1 \implies x + 2y - 3 + 3x - 9y = -1 \implies 4x - 7y - 2 = 0 \quad \text{(Equation 5)} \] Now we can simplify equations 4 and 5: - Equation 4: \(4x - 7y - 4 = 0\) - Equation 5: \(4x - 7y - 2 = 0\) Now, we can set them equal to find \(x\) and \(y\): The two equations lead us to find that the equal conditions \(x = 1\) and \(y = 0\) yield the solutions \(x = 4\) and \(y = 2\). Let’s substitute back to find \(z\): Using \(x = 4\) and \(y = 2\) back to solve for \(z = 1 - 4 + 3(2) = 1 - 4 + 6 = 3\). Thus, we get: \[ \begin{align*} x & = 4\\ y & = 2\\ z & = 3 \end{align*} \] The solution to the system of equations is: \[ (x, y, z) = (4, 2, 3) \]

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad