Find the area under the curve defined by \( f(x) = 2x + 1 \) between the points \( x = 1 \) and \( x = 3 \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the area under the curve defined by \( f(x) = 2x + 1 \) between \( x = 1 \) and \( x = 3 \), we need to compute the definite integral of the function from 1 to 3. The definite integral is given by: \[ \int_{1}^{3} (2x + 1) \, dx \] First, we find the antiderivative of \( 2x + 1 \): \[ \int (2x + 1) \, dx = x^2 + x + C \] Now, we evaluate the definite integral from 1 to 3: \[ \left[ x^2 + x \right]_{1}^{3} = \left( 3^2 + 3 \right) - \left( 1^2 + 1 \right) \] Calculating the values: \[ (9 + 3) - (1 + 1) = 12 - 2 = 10 \] Thus, the area under the curve between \( x = 1 \) and \( x = 3 \) is \( 10 \).