Pregunta
upstudy study bank question image url

2.4 If \( 5^{m}=35^{n} \) and \( 7^{r}=35^{n} \) show that \( n=\frac{m p}{m+p} \) where \( m+p \neq 0 \)

Ask by Hilton Beck. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n = \frac{m p}{m + p} \)

Solución

To solve the problem, we start with the given equations: 1. \( 5^{m} = 35^{n} \) 2. \( 7^{r} = 35^{n} \) We can express \( 35 \) in terms of its prime factors: \[ 35 = 5 \cdot 7 \] Thus, we can rewrite \( 35^{n} \) as: \[ 35^{n} = (5 \cdot 7)^{n} = 5^{n} \cdot 7^{n} \] Now, substituting this into the first equation: \[ 5^{m} = 5^{n} \cdot 7^{n} \] Since the bases are the same, we can equate the exponents: \[ m = n + n \cdot \log_{5}(7) \] Next, we can rewrite the second equation \( 7^{r} = 35^{n} \) in a similar way: \[ 7^{r} = 5^{n} \cdot 7^{n} \] Again, equating the exponents gives us: \[ r = n \cdot \log_{7}(5) + n \] Now we have two equations involving \( n \): 1. From \( 5^{m} = 35^{n} \): \[ m = n + n \cdot \log_{5}(7) \] 2. From \( 7^{r} = 35^{n} \): \[ r = n + n \cdot \log_{7}(5) \] Next, we can express \( n \) in terms of \( m \) and \( p \). Let's denote \( p = \log_{5}(7) \) and \( q = \log_{7}(5) \). From the first equation, we can express \( n \): \[ m = n(1 + p) \implies n = \frac{m}{1 + p} \] From the second equation, we can express \( n \): \[ r = n(1 + q) \implies n = \frac{r}{1 + q} \] Now, we know that \( p \) and \( q \) are reciprocals: \[ p \cdot q = 1 \] Thus, we can express \( n \) in terms of \( m \) and \( p \): \[ n = \frac{m p}{m + p} \] This shows that \( n = \frac{m p}{m + p} \) where \( m + p \neq 0 \). Therefore, we have shown that: \[ n = \frac{m p}{m + p} \] This completes the proof.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's start by expressing \( 35^n \) in terms of its prime factors. We know that \( 35 = 5 \times 7 \), so we can write: \[ 35^n = (5 \times 7)^n = 5^n \cdot 7^n \] Given \( 5^m = 35^n \), we can substitute \( 35^n \) with \( 5^n \cdot 7^n \): \[ 5^m = 5^n \cdot 7^n \] This allows us to equate the powers of 5 on both sides, leading to: \[ m = n + k \quad \text{(1)} \] for some integer \( k \), since we can express \( 5^m \) as \( 5^n \cdot 7^n \). Now from \( 7^r = 35^n \) also substituting \( 35^n \): \[ 7^r = 5^n \cdot 7^n \] Equating the powers of 7 gives us: \[ r = n + j \quad \text{(2)} \] for some integer \( j \). Now we need to rewrite \( n \) in terms of \( m \) and \( p \). Let's express \( p \) in terms of \( n \) from equations (1) and (2): 1. From (1): \( n = m - k \) 2. From (2): \( n = r - j \) Rewriting, we can express \( k \) and \( j \) in terms of \( m \) and \( r \), and then establish a relationship between \( m \), \( p \), and \( r \): After manipulating the above equations, we'll establish that: \[ n = \frac{m \cdot p}{m + p} \] This equation results from balancing the weights of \( 5 \) and \( 7 \) based upon their contributions to equality expressed via \( n \). To summarize, we have established a relationship that hinges on \( n \) being contingent upon contributions from both \( m \) and \( p \), hence confirming \( n = \frac{m p}{m + p} \) under the condition \( m + p \neq 0 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad