If \( \sin x=\frac{7}{25} \) and \( 90^{\circ}
Ask by Ross Savage. in South Africa
Jan 21,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
We start with the given information: \( \sin x = \frac{7}{25} \) and \( 90^{\circ} < x < 270^{\circ} \). Since \( x \) is in the second quadrant where sine is positive and cosine is negative, we can find \( \cos x \) using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1. \] Plugging in our value for \( \sin x \): \[ \left(\frac{7}{25}\right)^2 + \cos^2 x = 1, \] \[ \frac{49}{625} + \cos^2 x = 1. \] To isolate \( \cos^2 x \), we subtract \( \frac{49}{625} \) from 1: \[ \cos^2 x = 1 - \frac{49}{625} = \frac{625}{625} - \frac{49}{625} = \frac{576}{625}. \] Taking the square root, since \( \cos x \) is negative in the second quadrant: \[ \cos x = -\sqrt{\frac{576}{625}} = -\frac{24}{25}. \] Next, we need to find \( \tan x \): \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{7}{25}}{-\frac{24}{25}} = -\frac{7}{24}. \] We now substitute these values into the expression \( 25 \cos x - \frac{7}{\tan x} \): \[ 25 \cos x = 25 \left(-\frac{24}{25}\right) = -24. \] Next, we compute \( \frac{7}{\tan x} \): \[ \frac{7}{\tan x} = \frac{7}{-\frac{7}{24}} = -24. \] Now we can put it all together: \[ 25 \cos x - \frac{7}{\tan x} = -24 - (-24) = -24 + 24 = 0. \] Thus, the final value is: \[ \boxed{0}. \]